首页> 外文期刊>Journal of turbomachinery >Stress-Blended Eddy Simulation/Flamelet Generated Manifold Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction
【24h】

Stress-Blended Eddy Simulation/Flamelet Generated Manifold Simulation of Film-Cooled Surface Heat Transfer and Near-Wall Reaction

机译:薄膜冷却表面传热和近壁反应的应力混合涡流仿真/爆发产生歧管模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Accurate numerical prediction of surface heat transfer in the presence of film cooling within aero-engine sub-components, such as blade effusion holes and combustor liners, has long been a goal of the aero-engine industry. It requires accurate simulation of the turbulent mixing and reaction processes between freestream and the cooling flow. In this study, the stress-blended eddy simulation (SBES) turbulence model is used together with the flamelet generated manifold (FGM) combustion model to calculate the surface heat flux upstream and downstream of an effusion cooling hole. The SBES model employs a blending function to automatically switch between Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) based on the local flow features, and thus significantly reduces the computational cost compared to a full LES simulation. All simulations are run using ANSYS FLUENT®, a commercial finite-volume computational fluid dynamics (CFD) solver. The test case corresponds to an experimental rig run at Massachusetts Institute of Technology (MIT), which is essentially aflat plate brushed by a uniform freestream of argon with eth-ylene seeded inside, and is cooled by either a reacting air or a non-reacting nitrogen jet inclined at 35 deg to the freestream. Calculations are performed for both reacting and non-reacting jet cooling cases across a range of jet-to-stream blowing ratios and compared with the experimental data. The effects of mesh resolution are also investigated. Calculations are also performed across a range of Damkohler number (i.e., flow to chemical time ratio) from zero to 30, with unity blowing ratio, and the differences in the maximum surface heat flux magnitude in the reacting and non-reacting cases at a specific location downstream of the hole are investigated. Results from these analyses show good correlation with the experimental heat flux data upstream and downstream of the cooling hole, including the heat flux augmentation due to local reaction. Results from the Damkohler number sweep also show a good match with the experimental data across the range investigated.
机译:在空气发动机子组件(如刀片流速孔和燃烧器衬里)内的薄膜冷却存在下的表面传热的准确数字预测,长期以来一直是航空发动机行业的目标。它需要精确模拟FreeStream和冷却流之间的湍流混合和反应过程。在该研究中,应力混合涡流模拟(SBE)湍流模型与燧发物型歧管(FGM)燃烧模型一起使用,以计算积液冷却孔的上游和下游的表面热通量。 SBES模型采用混合函数来根据局部流特征在雷诺平均Navier-Stokes(RAN)和大型涡流模拟(LES)之间自动切换,从而显着降低了与完整LES仿真相比的计算成本。所有模拟都使用ANSYSFLUENT®运行,商业有限卷计算流体动力学(CFD)求解器。测试案例对应于马萨诸塞州理工学院(麻省理工学院)的实验钻机,其基本上是由氩气均匀的氩气均匀的氩气刷,并通过反应空气或非反应冷却氮气喷射倾斜在35°至FreeTeam中。在一系列射流到流吹气比和实验数据比较的情况下对反应和非反应喷射冷却病例进行计算。还研究了网格分辨率的影响。在从零到30的一系列达摩尔号(即,流到化学时间比率)的范围内也进行计算,具有统一吹出比,以及在特定的反应和非反应情况下最大表面热通量幅度的差异研究了孔下游的位置。来自这些分析的结果与冷却孔的上游和下游的实验热通量数据显示出良好的相关性,包括由于局部反应引起的热通量增强。 Damkohler号码扫描的结果还显示出良好的匹配,与调查范围的实验数据匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号