首页> 外文期刊>Journal of turbomachinery >Double Wall Cooling of a Full- Coverage Effusion Plate With Main Flow Pressure Gradient, Including Internal Impingement Array Cooling
【24h】

Double Wall Cooling of a Full- Coverage Effusion Plate With Main Flow Pressure Gradient, Including Internal Impingement Array Cooling

机译:具有主流压力梯度的全覆盖喷水板的双壁冷却,包括内部冲击阵列冷却

获取原文
获取原文并翻译 | 示例
           

摘要

The present study provides new effusion cooling data for both the surfaces of the full-coverage effusion cooling plate. For the effusion-cooled surface, presented are spatially resolved distributions of surface adiabatic film cooling effectiveness and surface heat transfer coefficients (measured using transient techniques and infrared thermography). For the impingement-cooled surface, presented are spatially resolved distributions of surface Nusselt numbers (measured using steady-state liquid crystal thermography). To produce this cool-side augmentation, impingement jet arrays at different jet Reynolds numbers, from 2720 to 11,100, are employed. Experimental data are given for a sparse effusion hole array, with spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. Considered are the initial effusion blowing ratios from 3.3 to 7.5, with subsonic, incompressible flow. The velocity of the freestream flow which is adjacent to the effusion-cooled boundary layer is increasing with streamwise distance, due to a favorable streamwise pressure gradient. Such variations are provided by a main flow passage contraction ratio CR of 4. Of particular interest are effects of impingement jet Reynolds number, effusion blowing ratio, and streamwise development. Also, included are comparisons of impingement jet array cooling results with: (i) results associated with crossflow supply cooling with CR = 1 and CR = 4 and (ii) results associated with impingement supply cooling with CR = 1, when the mainstream pressure gradient is near zero. Overall, the present results show that, for the same main flow Reynolds number, approximate initial blowing ratio, and streamwise location, significantly increased thermal protection is generally provided when the effusion coolant is provided by an array of impingement cooling jets, compared to a crossflow coolant supply.
机译:本研究为全覆盖式积液冷却板的两个表面提供了新的积液冷却数据。对于喷射冷却的表面,给出了表面绝热膜冷却效率和表面传热系数的空间分辨分布(使用瞬态技术和红外热像仪测量)。对于冲击冷却的表面,给出了表面Nusselt数的空间分辨分布(使用稳态液晶热成像法测量)。为了产生这种冷侧增大,采用了从2720至11100的不同射流雷诺数的冲击射流阵列。给出了一个稀疏的排液孔阵列的实验数据,该排液孔具有沿间距方向和沿流方向的冲击孔间距,以使冷却剂喷射孔的中心线位于各个排液孔入口之间的中间。考虑的是初始喷吹比为3.3至7.5,亚音速不可压缩流。由于有利的沿流方向的压力梯度,与积液冷却的边界层相邻的自由流的速度随着沿流方向的距离而增加。这种变化是通过主流动通道收缩率CR为4来提供的。特别令人关注的是冲击射流雷诺数,喷射吹风率和沿流方向发展的影响。此外,还包括冲击射流阵列冷却结果与以下各项的比较:(i)与主压力梯度为CR = 1和CR = 4时的横流供给冷却相关的结果,以及(ii)与CR = 1时的冲击供给冷却相关的结果接近零。总的来说,目前的结果表明,对于相同的主流雷诺数,近似的初始鼓风比和沿流向的位置,与错流相比,当通过一系列冲击冷却射流提供喷射冷却剂时,通常可以显着提高热保护能力。冷却液供应。

著录项

  • 来源
    《Journal of turbomachinery》 |2019年第4期|041002.1-041002.11|共11页
  • 作者单位

    Univ Alabama, Dept Mech & Aerosp Engn, Prop Res Ctr, 5000 Technol Dr,Olin B King Technol Hall S236, Huntsville, AL 35899 USA;

    Univ Alabama, Dept Mech & Aerosp Engn, Prop Res Ctr, 5000 Technol Dr,Olin B King Technol Hall S236, Huntsville, AL 35899 USA;

    Univ Alabama, Dept Mech & Aerosp Engn, Prop Res Ctr, 5000 Technol Dr,Olin B King Technol Hall S236, Huntsville, AL 35899 USA;

    Univ Alabama, Dept Mech & Aerosp Engn, Prop Res Ctr, 5000 Technol Dr,Olin B King Technol Hall S236, Huntsville, AL 35899 USA;

    Univ Alabama, Dept Mech & Aerosp Engn, Prop Res Ctr, 5000 Technol Dr,Olin B King Technol Hall S236, Huntsville, AL 35899 USA;

    Solar Turbines Inc, Combust Engn, 2200 Pacific Highway,Mail Zone E-4, San Diego, CA 92186 USA;

    Solar Turbines Inc, Combust Engn, 2200 Pacific Highway,Mail Zone E-4, San Diego, CA 92186 USA;

    Solar Turbines Inc, Combust Engn, 2200 Pacific Highway,Mail Zone E-4, San Diego, CA 92186 USA;

    Solar Turbines Inc, Combust Engn, 2200 Pacific Highway,Mail Zone E-4, San Diego, CA 92186 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号