首页> 外文期刊>Journal of turbomachinery >A Combined Experimental and Numerical Investigation of the Flow and Heat Transfer Inside a Turbine Vane Cooled by Jet Impingement
【24h】

A Combined Experimental and Numerical Investigation of the Flow and Heat Transfer Inside a Turbine Vane Cooled by Jet Impingement

机译:射流冷却涡轮叶片内部流动与传热的组合实验与数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

The present study aims at characterizing the flow field and heat transfer for a schematic but realistic vane cooling scheme. Experimentally, both velocity and heat transfer measurements are conducted to provide a detailed database of the investigated configuration. From a numerical point of view, the configuration is investigated using isotropic and anisotropic Reynolds-averaged Navier-Stokes (RANS) turbulence models. A hybrid RANS/large eddy simulation (LES) technique is also considered to evaluate potential unsteady effects. Both experimental and numerical results show a very complex three-dimensional (3D) flow. Air is not evenly distributed between different injections, mainly because of a large recirculation flow. Due to the strong flow deviation at the hole inlet, the velocity distribution and the turbulence characteristics at the hole exit are far from fully developed profiles. The comparison between particle image velocimetry (PIV) measurements and numerical results shows a reasonable agreement. However, coming to heat transfer, all RANS models exhibit a major overestimation compared to IR thermography measurements. The Billard-Laurence model does not bring any improvement compared to a classical k-omega shear stress transport (SST) model. The hybrid RANS/LES simulation provides the best heat transfer estimation, exhibiting potential unsteady effects ignored by RANS models. Those conclusions are different from the ones usually obtained for a single fully developed impinging jet.
机译:本研究旨在描述一种示意性但现实的叶片冷却方案的流场和传热特性。实验上,进行了速度和热传递测量,以提供所研究配置的详细数据库。从数值角度来看,使用各向同性和各向异性雷诺平均Navier-Stokes(RANS)湍流模型研究了该构型。还考虑了混合RANS /大涡模拟(LES)技术来评估潜在的不稳定影响。实验和数值结果均显示了非常复杂的三维(3D)流动。空气在不同的进样之间分布不均,这主要是因为再循环流量大。由于孔入口处的流量存在较大的偏差,因此孔出口处的速度分布和湍流特性远未完全显现出来。粒子图像测速(PIV)测量结果与数值结果之间的比较显示出合理的一致性。但是,在传热方面,与红外热像仪测量相比,所有RANS模型都存在高估的问题。与经典的k-ω剪切应力传递(SST)模型相比,Billard-Laurence模型没有带来任何改进。 RANS / LES混合仿真提供了最佳的传热估算,表现出RANS模型忽略的潜在不稳定影响。这些结论不同于通常对单个完全发展的撞击射流所得出的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号