首页> 外文期刊>Journal of turbomachinery >Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel: Comparison of Particle Image Velocimetry, Large Eddy Simulation, and RANS to Identify RANS Limitations
【24h】

Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel: Comparison of Particle Image Velocimetry, Large Eddy Simulation, and RANS to Identify RANS Limitations

机译:单行窄碰撞通道中的流动和传热分析:粒子图像测速,大涡模拟和RANS的比较,以识别RANS限制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was similar or equal to 15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is three times the impingement jet diameter. The channel width is four times the jet diameter of the impingement hole. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle image velocimetry (PIV) was used to reveal the detailed information of flow phenomena. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and the turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveal that the flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) simulations (shear stress transport k-omega, nu(2)-f, and Reynolds stress model (RSM)) were performed in the same channel geometry. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature-sensitive paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with the results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.
机译:本研究旨在了解用于燃气轮机传热应用的单排窄冲击通道中的流动,湍流和传热。自从几种先进的制造技术问世以来,窄壁冷却方案已变得更加实用。在这项研究中,基于喷嘴直径的雷诺数近似或等于15,000,其中喷嘴板具有固定的喷嘴孔直径和孔间距。通道的高度是冲击射流直径的三倍。通道宽度是冲击孔喷射直径的四倍。通过实验和数值研究了单排窄碰撞通道中的流动和传热动力学。粒子图像测速(PIV)用于揭示流动现象的详细信息。在沿射流中心线垂直于目标壁的平面上进行PIV测量。分析了平均速度场和由平均流场产生的湍流统计数据。 PIV的实验数据表明,在狭窄的撞击通道中,流动是高度各向异性的。为了支持实验数据,进行了壁模型大涡模拟(LES)和雷诺平均Navier-Stokes(RANS)模拟(剪切应力传递k-omega,nu(2)-f和雷诺应力模型(RSM))。在相同的通道几何中。将根据RANS和LES计算的平均速度与PIV数据进行比较。从实验中计算出湍动能预算,并将其与LES和RSM模型进行比较,突出了RANS模型的主要缺点,无法预测撞击问题的正确传热行为。对温度敏感的涂料(TSP)也用于通过实验获得靶材和侧壁上的局部传热分布。尝试将复杂的空气动力学行为与热传递的结果联系起来,表明热传递是流动现象的体现。 LES在预测平均流场,湍流统计和传热方面的准确性在当前工作中得到了证明,因为通过PIV和TSP对实验数据进行了验证。

著录项

  • 来源
    《Journal of turbomachinery》 |2018年第3期|031010.1-031010.11|共11页
  • 作者单位

    Univ Cent Florida, Ctr Adv Turbomachinery & Energy Res, 12781 Ara Dr, Orlando, FL 32816 USA;

    Univ Cent Florida, Ctr Adv Turbomachinery & Energy Res, 12781 Ara Dr, Orlando, FL 32816 USA;

    Univ Cent Florida, Ctr Adv Turbomachinery & Energy Res, 12781 Ara Dr, Orlando, FL 32816 USA;

    Univ Cent Florida, Ctr Adv Turbomachinery & Energy Res, 12781 Ara Dr, Orlando, FL 32816 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号