首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Improved Exponential Integral Approximation for Tangent-Slab Radiation Transport
【24h】

Improved Exponential Integral Approximation for Tangent-Slab Radiation Transport

机译:切线平板辐射传输的改进指数积分逼近

获取原文
获取原文并翻译 | 示例
       

摘要

THE tangent-slab approximation is often used to compute shock-nlayer radiation for reentry vehicles [1].With this approximation,nthe radiative flux directed to the vehicle wall is a function of thenproperties along the line of sight normal to the body. Thus, the wall-ndirected radiative flux at point z along the line of sight iswritten as [2]nqu0002nu0001 u0003zu0004u0005 2u0004nZ su0005zsnsu0005znju0001u0003su0004nu0001nu0001nu0001nu0001ndE3u0006u0003u0003s; zu0004u0007ndu0003nu0001nu0001nu0001nu0001nds (1)nwhere zs is the outer limit of integration (such as the shock location),nu0003u0003s; zu0004 is the optical thickness defined asnu0003u0003s; zu0004u0005nZ znsnu0002u0001 dz (2)nand ju0001 and u0002u0001 are the emission and absorption coefficients,nrespectively. The function E3 in Eq. (1) represents the third-ordernexponential integral, defined as E3u0003xu0004u0005nZ 1n1n!u00023nexpu0003u0002!xu0004 d! (3)nfor which there is no exact analytic solution.nThe numerical solution of Eqs. (1–3) is required at each spatial andnspectral point in the shock layer, which for typical cases consists ofnmore than 1 u0001 106npoints. As a result of this large number of points,nan efficient solution procedure is desired for these equations. Ancommon approach [3,4] is to approximate E3 with an exponentialnfunction of the following form:nE3u0003xu0004u0005 1n2neu0002axn(4)nwhere a is a constant. Values for a have been cited by numerousnresearchers: Hunt and Sibulkin (HS) [5], a u0005 2:0; Siegel and Howelln(SH) [6], a u0005 1:8;Ozisik (OZ) [7], a u0005 1:562; andModest (MO) [8],na u0005 1:5. Another approximation was presented by Murty (MU) [9]nin a slightly different form:nE3u0003xu0004u0005 0:30eu00021:1613xnb 0:222eu00022:941xn(5)nThe exponential form of these approximations allows for simpli-nfications in the numerical evaluation of Eqs. (1–3). This is seen bynsubstituting Eq. (4) into Eq. (1), resulting innqu0002nu0001 u0003zu0004u0005 u0004aeu0002au0003u00030;zu0004nZ su0005zsnsu0005znju0001u0003su0004eau0003u00030;su0004nds (6)nThis form is advantageous because the integrand is not a function ofnz, which significantly simplifies its numerical evaluation. Annanalogous formof Eq. (6)may also bewritten using Eq. (5).Note thatnother proposed nonexponential E3 approximations [10–12] do notnallow for this simplification.nFigure 1 compares the exact values of E3 with the HS [5], SH [6],nand MU [9] approximations. A noticeable disagreement with thenexact function is seen for the HS and SH approximations, while thenMU approximation agrees relatively well. Although not shown innFig. 1, similar disagreement is obtained using the OZ [7] andMO [8]napproximations. The influence of this disagreement on shock-layernradiative flux predictions may be assessed by assuming the shocknlayer is a constant property layer.With this assumption, Eq. (1) maynbe integrated analytically to obtain the following:nqu0002nu0001 u0003zu0004u0005 2u0004nju0001nu0002u0001nu0006E3u00030u0004u0002 E3u0003xu0004u0007 (7)nwhere x u0005 u0003u00030;zu0004, which is equal to u0002u0001z (and z is the thickness of thenlayer). By studying Eq. (7), the qualities of an E3 approximation thatnwill lead to an accurate prediction of shock-layer radiative flux maynbe obtained. For instance, observing that E3u00030u0004u0005 0:5 andnE3u00031:5u0004u0005 0:0567, it is concluded that the accuracy of E3 for x 1:5. This is true because thencontribution of E3u0003xu0004 to the bracketed difference in Eq. (7) is smallnfor x> 1:5. Next, note that for optically thin conditions (x t 1),nEq. (7) may be expanded in a Taylor series asnqu0002nu0001 u0003x t 1u0004u0005u00022u0004nju0001nu0002u0001nxndE3u00030u0004ndxnb Ou0003x2nu0004 (8)nThis shows that the derivative of E3 at x u0005 0 must be accurate for thenE3 approximation to accurately model optically thin conditions.nLastly, for optically thick conditions (x n 1), Eq. (7) reduces tonqu0002nu0001 u0003zu0004u0005 2u0004nju0001nu0002u0001nE3u00030u0004b Ou0003eu0002xn=xu0004 (9) nwhich implies that the value of E3 at x u0005 0 must be accurate for thenapproximation to accurately model optically thick conditions.nThe previous paragraph suggests the following three criteria forndeveloping an E3 approximation that provides an accurate predictionnof shock-layer radiative flux:n1) The accuracy of E3 for x< 1:5 ismore important than for largernx values.n2) The E3 derivative at x u0005 0 must be accurately modeled.n3) The E3 value at x u0005 0 must be accurately modeled.nOf the previous approximations mentioned in the discussion ofnEqs. (4) and (5), all except theMU approximation satisfy criterion 2,nwhereas only the HS and MU approximations satisfy criterion 3.nRegarding criterion 1, it will be shown in the next section that allnmentioned approximations, except the MU approximation, havenmaximum errors greater than 5%for x values below 1.5. The subjectnof the remainder of this Note is to find an approximation that has annerror of less than 5% for values of x below 1.5 while also satisfyingncriteria 2 and 3.
机译:切线板近似通常用于计算再入车辆的冲击层辐射[1]。通过这种近似,指向车壁的辐射通量是沿垂直于身体视线的特性的函数。因此,沿着视线在点z处的壁定向辐射通量写为[2] nqu0002nu0001 u0003zu0004u0005 2u0004nZ su0005zsnsu0005znju0001u0003su0004nu0001nu0001nu0001nu0001nu0001nd00013E0006u0003u0003s; zu0004u0007ndu0003nu0001nu0001nu0001nu0001nds(1)n其中zs是积分的外部极限(例如电击位置),nu0003u0003s; zu0004是定义为asnu0003u0003s的光学厚度; zu0004u0005nZ znsnu0002u0001 dz(2)n和ju0001和u0002u0001分别是发射系数和吸收系数。方程中的函数E3。 (1)表示三阶指数积分,定义为E3u0003xu0004u0005nZ 1n1n!u00023nexpu0003u0002!xu0004 d! (3)n没有确切的解析解。n方程的数值解。 (1–3)在冲击层的每个空间和光谱点都需要,在典型情况下,该点由n个以上的u0001 106n个点组成。由于存在大量的点,因此需要对这些方程采用更有效的求解程序。常见方法[3,4]是用以下形式的指数函数来近似E3:nE3u0003xu0004u0005 1n2neu0002axn(4)n其中a是一个常数。 a的值已被众多研究人员引用:Hunt and Sibulkin(HS)[5],u0005 2:0; Siegel和Howelln(SH)[6],u0005 1:8; Ozisik(OZ)[7],u0005 1:562; andModest(MO)[8],na 1:5。 Murty(MU)[9] [n]提出了另一种近似形式,形式略有不同:nE3u0003xu0004u0005 0:30eu00021:1613xnb 0:222eu00022:941xn(5)n这些近似值的指数形式可以简化方程式的数值计算。 (1-3)。通过代入方程式可以看出这一点。 (4)式(1),结果为:nqu0002nu0001 u0003zu0004u0005 u0004aeu0002au0003u00030; zu0004nZ su0005zsnsu0005znju0001u0003su0004eau0003u00030; su0004nds(6)n这种形式是有利的,因为被整数不是数值的函数,它的整数有效。式的形式。 (6)也可以用等式(5)。请注意,没有其他建议的非指数E3近似值[10-12]不能简化该情况。n图1将E3的精确值与HS [5],SH [6],n和MU [9]近似值进行了比较。对于HS和SH近似,可以看到与thenexact函数的明显不同,而MU近似则相对较好。虽然图中未显示。如图1所示,使用OZ [7]和MO [8]近似值可获得类似的分歧。可以通过假设冲击层是一个恒定的特性层来评估这种分歧对冲击层辐射通量预测的影响。 (1)可能无法进行分析积分以获得以下内容:nqu0002nu0001 u0003zu0004u0005 2u0004nju0001nu0002u0001nu0006E3u00030u0004u0002 E3u0003xu0004u0007(7)n其中x u0005 u0003u00030; zu0004等于u0002u0001z的厚度(且z等于)。通过研究情商。 (7),可以得到E3近似值的质量,该质量将导致对冲击层辐射通量的准确预测。例如,观察到E3u00030u0004u0005 0:5和nE3u00031:5u0004u0005 0:0567,可以得出结论:对于x 1:5更为重要。这是正确的,因为这样E3u0003xu0004对等式中括号中的差异的贡献。 (7)对于x> 1:5较小。接下来,请注意,对于光学较薄的条件(x t 1),nEq。 (7)可以以泰勒级数展开asnqu0002nu0001 u0003x t 1u0004u0005u00022u0004nju0001nu0002u0001nxndE3u00030u0004ndxnb Ou0003x2nu0004(8)n这表明对于光学条件,E3的导数必须在xu0005 0范围内精确,对于光学模型来说,E3近似薄(精确地模拟)。 1),等式(7)减少tonqu0002nu0001 u0003zu0004u0005 2u0004nju0001nu0002u0001nE3u00030u0004b Ou0003eu0002xn = xu0004(9)n这意味着在x u0005 0处的E3值必须是精确的,然后才能近似精确地模拟光学厚度条件。冲击层辐射通量的准确预测:n1)x <1:5的E3精度比更大的nx值更重要.n2)x u0005 0处的E3导数必须准确建模.n3)x u0005处的E3值必须精确建模0。n在讨论nEqs时提到的先前近似值。 (4)和(5),除了MU近似值都满足标准2,而只有HS和MU近似值满足标准3。n关于标准1,在下一节中将显示除MU近似值之外的所有提及的近似值。,对于小于1.5的x值,最大误差大于5%。本注释其余部分的主题是,对于x值小于1.5且满足标准2和3的情况,发现误差小于5%的近似值。

著录项

  • 来源
    《Journal of Thermophysics and Heat Transfer》 |2010年第3期|p.659-661|共3页
  • 作者

    Christopher O. Johnston;

  • 作者单位

    NASA Langley Research Center, Hampton, Virginia 23681;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 14:01:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号