首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Flame Temperature Distribution Measurement of Solid Propellants
【24h】

Flame Temperature Distribution Measurement of Solid Propellants

机译:固体推进剂的火焰温度分布测量

获取原文
获取原文并翻译 | 示例
       

摘要

All results in this paper are given based on the following assumptions: 1) combustion of the flame is steady; 2) the flame is optically thin for its small size; and 3) the flame is in local thermal equilibrium state. The temperature distributions in the axes for the SQ-2 propellant at different pressures are shown in Fig. 2. There are three areas, the climbing-temperature area, the high-temperature area and the fall-temperature area, in the temperature distribution. The temperature in the high-temperature area is unstable because of the turbulence of the flame and the unsteady of combustion. And also, this instability can be found in the line intensity data without Abel's inversion. The maximum flame temperatures are compared with the results from thermocouple method and equilibrium calculation (shown in Table 1). The data of thermocouple method and equilibrium calculation are provided by the Beijing Institute of Technology. The data in Table 1 show that the maximum flame temperature increases along with the rising of the pressure. The results from the spectroscopy method are about 100 K higher than those from the thermocouple method and much nearer to the temperature from equilibrium calculation with the rising of the pressure. As a reference, Dong Yang has reported that the maximum temperatures of SQ-2 propellant exhaust plumes are 2234 and 2202 K for 240 and 500 mm apart from the motor nozzle when the work pressure of the chamber is about 13.0 MPa. The results from the spectroscopic diagnostic system are reasonable in comparison with the preceding results from other methods. The relative standard deviations of maximum temperature of the SQ-2 propellent's flame at different pressures are less than 5% for all measurements. The temperature distribution of the solid-propellant nitrate-ester-plasticized polyethane (NEPE) is also measured by the spectroscopic diagnostic system. The result is not satisfactory because there are metal particles in the NEPE propellant, which will absorb and scatter the radiation, and emit their own spectrum. Figure 3 shows one of the measurement results. In fact, the temperature measurements for the NEPE propellant at different pressures are made for many times. The relative standard deviations of the maximum flame temperature are about 15% in our measurements, which are a little bit larger. This will be studied in the later work.
机译:本文所有结果均基于以下假设得出:1)火焰燃烧稳定; 2)火焰由于尺寸小而在光学上较薄; 3)火焰处于局部热平衡状态。 SQ-2推进剂在不同压力下的轴向温度分布如图2所示。在温度分布中,存在三个区域,即攀爬温度区域,高温区域和下降温度区域。由于火焰的湍流和不稳定的燃烧,高温区域的温度不稳定。而且,在不使用Abel求反的情况下,可以在线路强度数据中找到这种不稳定性。将最高火焰温度与热电偶方法和平衡计算的结果进行比较(如表1所示)。热电偶法和平衡计算的数据由北京理工大学提供。表1中的数据表明,最高火焰温度随着压力的升高而升高。光谱法的结果比热电偶法的结果高约100 K,并且随着压力的升高,通过平衡计算得出的结果更接近温度。作为参考,Dong Yang报告说,当腔室的工作压力约为13.0 MPa时,对于距马达喷嘴240和500 mm的地方,SQ-2推进剂废气羽流的最高温度分别为2234和2202K。与其他方法的先前结果相比,光谱诊断系统的结果是合理的。对于所有测量,SQ-2推进剂火焰在不同压力下的最高温度的相对标准偏差均小于5%。固体推进剂硝酸酯-酯化的聚乙烯(NEPE)的温度分布也通过光谱诊断系统进行测量。结果不令人满意,因为NEPE推进剂中有金属颗粒,它们会吸收和散射辐射,并发射出自己的光谱。图3显示了其中一种测量结果。实际上,对NEPE推进剂在不同压力下的温度进行了多次测量。在我们的测量中,最高火焰温度的相对标准偏差约为15%,稍大一些。这将在以后的工作中进行研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号