首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Thermal-Fluid Modeling For High Thermal Conductivity Heat Pipe Thermal Ground Planes
【24h】

Thermal-Fluid Modeling For High Thermal Conductivity Heat Pipe Thermal Ground Planes

机译:高导热率热管热地平面的热流体建模

获取原文
获取原文并翻译 | 示例
       

摘要

The thermal ground plane is an advanced planar heat pipe designed for cooling microelectronics in high gravitational fields. A thermal resistance model is developed to predict the thermal performance of the thermal ground plane, including the effects of the presence of noncondensable gases. Viscous laminar flow pressure losses are predicted to determine the maximum heat load when the capillary limit is reached. This paper shows that the axial effective thermal conductivity of the thermal ground plane decreases when the substrate and/or wick are thicker and/ or with the presence of noncondensable gases. Moreover, it was demonstrated that the thermal-fluid model may be used to optimize the performance of the thermal ground plane by estimating the limits of wick thickness and vapor space thickness for a recognized internal volume of the thermal ground plane. The wick porosity plays a significant role in maximum heat transport capability. A large adverse gravitational field strongly decreases the maximum heat transport capability of the thermal ground plane. Axial effective thermal conductivity is mostly unaffected by the gravitational field. The maximum length of the thermal ground plane prior to reaching the capillary limit is inversely proportional to input power.
机译:热接地平面是一种先进的平面热管,设计用于在高重力场中冷却微电子器件。开发了一个热阻模型来预测热接地层的热性能,包括不凝性气体的存在的影响。预计粘性层流压力损失会在达到毛细管极限时确定最大热负荷。本文表明,当基板和/或灯芯较厚和/或存在不凝性气体时,热接地平面的轴向有效导热系数会降低。此外,已经证明,可以通过针对已知的热接地平面的内部体积估计芯厚度和蒸气空间厚度的极限,使用热流体模型来优化热接地平面的性能。灯芯孔隙率在最大传热能力中起着重要作用。大的反重力场会大大降低热接地平面的最大传热能力。轴向有效热导率大部分不受重力场的影响。达到毛细极限之前,热接地平面的最大长度与输入功率成反比。

著录项

  • 来源
    《Journal of Thermophysics and Heat Transfer》 |2014年第2期|270-278|共9页
  • 作者单位

    University of Cincinnati, Cincinnati, Ohio 45221-0018,Department of Mechanical and Materials Engineering, Microscale Heat Transfer Lab, P.O. Box 210018 Defense/Aerospace Division, Advanced Cooling Technologies, Inc., Lancaster, PA 17601;

    University of Cincinnati, Cincinnati, Ohio 45221-0018,Mechanical Engineering and College of Engineering and Applied Science, Department of Mechanical and Materials Engineering, Microscale Heat Transfer Lab, P.O. Box 210018;

    CoolChip Technologies, Boston, Massachusetts 02111,186 Lincoln Street Suite 600;

    GE Global Research Center, Niskayuna, New York 12309,Aero-Thermal & Mechanical Systems, One Research Circle;

    GE Global Research Center, Niskayuna, New York 12309,One Research Circle;

    Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China,Materials Science and Engineering, Research Institute of Composite Materials, Office Room 412, Material Building F, 655 Panyu Rd, Xuhui;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:01:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号