首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Inverse Ablation Analysis and the Calibration Integral Equation Method
【24h】

Inverse Ablation Analysis and the Calibration Integral Equation Method

机译:反烧蚀分析和校准积分方程法

获取原文
获取原文并翻译 | 示例
       

摘要

The calibration integral equation method has been demonstrated for resolving inverse heat conduction problems based on an invariant sample geometry. This paper proposes to extend its applicability to the investigation of ablation through an abstraction based on forming a fictive surface temperature poised at the nonrecessive origin. Resolving this time-dependent temperature history provides a boundary condition that can be used in a restricted space defined between the nonrecessive origin and an in-depth thermocouple. This fictive temperature (or heat flux) provides an equivalence-based formulation defined in the original spatial domain because the calibration integral equation method is based on conservation principles. The extraction of the fictive boundary condition does not require knowledge of the thermophysical properties or probe position(s) because it is based on calibration. The complexity of ablation requires a compromise between a fully calibrative technique and forward solving approaches. The second step of the two-step process now requires the specification of the thermophysical and geometrical parameters. For this preliminary study, the classical single-ablation temperature inverse problem is revisited but without any additional constraints being imposed. The recession, recession rate, and recession heat flux for a single-temperature ablative material can be solved for by direct means. This paper presents the first test study illustrating the concept and provides highly favorable results using simulated test data based on a Teflon sample with known ablation temperature while under significant thermal loading conditions.
机译:为了解决基于不变样品几何形状的导热反问题,已经证明了校准积分方程法。本文提出通过在形成非隐性起源的虚构表面温度的基础上进行抽象,将其适用性扩展至消融研究。解决这个与时间相关的温度历史记录,提供了一个边界条件,可以在非隐性起点和深度热电偶之间定义的受限空间中使用。虚构温度(或热通量)提供了在原始空间域中定义的基于当量的公式,因为校准积分方程方法基于守恒原理。虚构边界条件的提取不需要了解热物理性质或探头位置,因为它是基于校准的。消融的复杂性要求在完全校准技术和正解方法之间进行折衷。现在,两步过程的第二步需要指定热物理参数和几何参数。对于该初步研究,重新讨论了经典的单烧蚀温度反问题,但没有施加任何其他约束。可以通过直接手段解决单温度烧蚀材料的退缩,退缩速率和退缩热通量。本文介绍了第一个试验研究,阐明了这一概念,并在明显的热负荷条件下,使用了基于具有已知烧蚀温度的聚四氟乙烯样品的模拟试验数据,提供了非常令人满意的结果。

著录项

  • 来源
    《Journal of Thermophysics and Heat Transfer》 |2017年第1期|10-19|共10页
  • 作者

    Frankel J. I.; Keyhani M.;

  • 作者单位

    Univ Tennessee, Mech Aerosp & Biomed Engn Dept, Knoxville, TN 37996 USA;

    Univ Tennessee, Mech Aerosp & Biomed Engn Dept, Knoxville, TN 37996 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:01:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号