...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Nonlinear thermodynamic phase field theory with application to fracture and dynamic inelastic phenomena in ceramic polycrystals
【24h】

Nonlinear thermodynamic phase field theory with application to fracture and dynamic inelastic phenomena in ceramic polycrystals

机译:非线性热力学期场理论与陶瓷多晶中裂缝和动态非弹性现象的应用

获取原文
获取原文并翻译 | 示例

摘要

A geometrically nonlinear phase field theory accounting for dissipation, rate effects, nonlinear thermoelasticity, fracture, and other structural changes is constructed in the context of continuum thermodynamics. First, a general framework accommodating arbitrary strain energy potentials, inelastic deformation kinematics, and unlimited order parameters is formulated. Next, the framework is specialized to account for deformation physics pertinent to crystalline ceramics and minerals deformed at high rates and high pressures. Notably, a logarithmic elastic strain tensor referred to an intermediate material configuration enters the nonlinear thermoelastic potential. Order parameters represent fractures, solid-solid phase transformations, deformation twinning, or slip of partial dislocations. Thermodynamically consistent kinetics manifest in equations reminiscent of Ginzburg-Landau dynamics, wherein viscosity coefficients are most generally state- and rate-dependent. Pressure-dependent strength commensurate with frictional resistance is enabled in alternative kinetic equations for dynamic fracture with irreversibility constraints. Linearization of the model suitable for moderate volume changes but small deviatoric elastic strain and rotation is undertaken. The theory is applied to study deformation and failure of polycrystalline forms of boron carbide (B_4C), titanium diboride (TiB_2), and a B_4C-TiB_2 ceramic composite. Solutions are derived and evaluated numerically for uniaxial stress tension and compression, uniaxial strain compression, and planar shock compression. The latter analysis yields relationships among viscosity coefficients, gradient regularization lengths, and characteristics of steady plastic waveforms. Results give new insight into high-rate deformation mechanisms previously speculated in these materials.
机译:在连续um热力学的背景下构建了用于耗散,速率效应,非线性热弹性,断裂和其他结构变化的几何非线性相场理论。首先,配制了适应任意应变能电位,无间隙变形运动学和无限顺序参数的一般框架。接下来,该框架专门用于考虑与晶体陶瓷和矿物质相关的变形物理,以高速率和高压变形。值得注意的是,参考中间材料配置的对数弹性应变张量进入非线性热弹性电位。订单参数表示裂缝,固体相变,变形孪晶或部分脱位滑动。热力学一致的动力学在方程中清洁,使Ginzburg-Landau动力学中兴于粘性系数,其中粘度系数是最常见的和率依赖性的。在替代动力学方程中,能够具有不可逆的限制的动态骨折的替代动力学方程,使压力依赖性强度。适用于中等体积变化的模型的线性化,但脱离有弹性应变和旋转。该理论用于研究多晶形式的硼碳化硼(B_4C),二硼化钛(TIB_2)和B_4C-TIB_2陶瓷复合材料的变形和失效。为单轴应力张力和压缩,单轴应变压缩和平面冲击压缩进行数值衍生和评价溶液。后一分析产生粘度系数,梯度正则化长度和稳定塑性波形特性之间的关系。结果为先前推测这些材料推测的高速变形机制提供新的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号