首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Propagation of a plane-strain hydraulic fracture accounting for a rough cohesive zone
【24h】

Propagation of a plane-strain hydraulic fracture accounting for a rough cohesive zone

机译:粗粘性区的平面菌株液压骨折算法的传播

获取原文
获取原文并翻译 | 示例
           

摘要

The quasi-brittle nature of rocks challenges the basic assumptions of linear hydraulic fracture mechanics (LHFM): namely, linear elastic fracture mechanics and smooth parallel plates lubrication fluid flow inside the propagating fracture. We relax these hypotheses and investigate in details the growth of a plane-strain hydraulic fracture in an impermeable medium accounting for a rough cohesive zone and a fluid lag. In addition to a dimensionless toughness and the time-scale t_(om) of coalescence of the fluid and fracture fronts governing the fracture evolution in the LHFM case, the solution now also depends on the ratio between the in-situ stress and material peak cohesive stress σ_o/σ_c and the intensity of the flow deviation induced by aperture roughness (captured by a dimensionless power exponent). We show that the solution is appropriately described by a nucleation time-scale t_(cm) = t_(om) × (σ_o/σ_c)~3, which delineates the fracture growth into three distinct stages: a nucleation phase (t≤t_(cm)), an intermediate stage (r ~ t_(cm)) and late time (t ≥ t_(cm)) stage where convergence toward LHFM predictions finally occurs. A highly non-linear hydro-mechanical coupling takes place as the fluid front enters the rough cohesive zone which itself evolves during the nucleation and intermediate stages of growth. This coupling leads to significant additional viscous flow dissipation. As a result, the fracture evolution deviates from LHFM predictions with shorter fracture lengths, larger widths and net pressures. These deviations from LHFM ultimately decrease at late times (t≥ t_(cm)) as the ratios of the lag and cohesive zone sizes with the fracture length both become smaller. The deviations increase with larger dimensionless toughness and larger σ_o/σ_c ratio, as both have the effect of further localizing viscous dissipation near the fluid front located in the small rough cohesive zone. The convergence toward LHFM can occur at very late time compared to the nucleation time-scale t_(cm) (by a factor of hundred to thousand times) for realistic values of σ_o/σ_c encountered at depth. The impact of a rough cohesive zone appears to be prominent for laboratory experiments and short in-situ injections in quasi-brittle rocks with ultimately a larger energy demand compared to LHFM predictions.
机译:岩石的准脆性性质挑战线性液压断裂力学(LHFM)的基本假设:即线性弹性断裂力学和平滑平行板润滑流体流动在传播骨折内。我们放松这些假设,并调查细节在粗糙的粘性区域和流体滞后的不可渗透介质中的平面菌株液压骨折的生长。除了无量纲的韧性和流体的聚结的时间标度T_(OM)除了控制LHFM情况下的骨折演变的裂缝前线之外,所述溶液现在还取决于原位应力和材料峰之间的比率应力σ_o/σ_c和光圈粗糙度引起的流动偏差强度(由无量纲功率指数捕获)。我们表明该解决方案由成核时间级T_(CM)= T_(OM)×(σ_o/σ_c)〜3适当地描述,其描绘了裂缝生长分为三个不同的阶段:成核阶段(t≤t_( CM)),中间阶段(R〜T_(cm))和晚期(t≥T_(cm))阶段,其中对LHFM预测的收敛最终发生。当流体前线进入粗糙的粘性区域时,发生高度线性的水力机械耦合,该区域本身在成核和生长的中间阶段期间发展。该耦合导致显着的额外粘性流量耗散。结果,骨折进化偏离LHFM预测,较短的断裂长度,宽度和净压力较大。从LHFM的这些偏差最终在延迟时间(T≥T_(cm))降低(T≥(cm))作为滞后和粘性区域尺寸的比率,裂缝长度都变小。偏差随着较大的无量纲韧性和较大的Σ_O/σ_c比而增加,因为两者都具有进一步定位粘性耗散在小粗糙粘性区域中的流体前面附近的效果。与核心时间级T_(cm)(百分之一百万次)相比,LHFM的收敛可能在很晚的时间内发生,以便在深度遇到Σ_O/Σ_C的实际值。与LHFM预测相比,粗糙的粘性区对实验室实验的影响和准脆性岩石中的近似原位注射率较大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号