首页> 外文期刊>Journal of the Mechanics and Physics of Solids >High-performance full-field crystal plasticity with dislocation-based hardening and slip system back-stress laws: Application to modeling deformation of dual-phase steels
【24h】

High-performance full-field crystal plasticity with dislocation-based hardening and slip system back-stress laws: Application to modeling deformation of dual-phase steels

机译:基于位错的硬化和滑移系统背应力定律的高性能全场晶体塑性:在双相钢变形建模中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a microstructural cell-level crystal plasticity model aimed at predicting elasto-plastic, anisotropic, rate- and temperature-sensitive deformation of polycrystalline aggregates subjected to large plastic strains. The crystallography-based model embeds strain-path aware dislocation-based hardening and slip-system-level kinematic back-stress laws. The crystal-level response is linked to the microstructural cell-level response using an elasto-viscoplastic fast Fourier transform-based (EVPFFT) micromechanical homogenization. The overall model is ported on a high-performance computational platform integrating a graphics processing unit (GPU) to facilitate computationally efficient modeling of high-resolution microstructures. The high-performance multi-level EVPFFT is applied to modeling monotonic and cyclic deformation of dual-phase (DP) steel sheets. To this end, the effective elastic and flow stress behavior under monotonic and cyclic deformation is calculated for several steels: three DP, DP 590, DP 980, and DP 1180, and one martensitic (MS), MS 1700. Crystallographic textures and phase fractions of these steels are characterized using electron microscopy along with electron-backscattered diffraction to initialize the models. A comprehensive set of Young's modulus, Poisson's ratio, and flow stress data is used to calibrate and validate the model. The model parameters for ferrite and martensite are identified using data for two steels and used to predict the behavior of the other two streels. The model captures elasto-plastic monotonic behavior as well as the particularities pertaining to large strain cyclic deformation characteristics such as non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals based on evolving microstructure including the evolution of dislocation density and crystallographic grain reorientation. In addition, it offers insights into the role of back-stress and dislocation annihilation on the cyclic deformation of DP steels. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文提出了一种微结构单元级晶体可塑性模型,旨在预测承受大塑性应变的多晶聚集体的弹塑性,各向异性,速率和温度敏感变形。基于晶体学的模型嵌入了基于应变路径的位错基于硬化和滑移系统级的运动背应力定律。使用基于弹-粘塑性快速傅立叶变换(EVPFFT)的微机械均质化,将晶体级响应与微结构单元级响应相关联。整个模型移植到集成了图形处理单元(GPU)的高性能计算平台上,以促进高分辨率微结构的高效计算建模。高性能多级EVPFFT用于建模双相(DP)钢板的单调和循环变形。为此,计算了几种钢在单调和循环变形下的有效弹性和流动应力行为:三种DP,DP 590,DP 980和DP 1180,以及一种马氏体(MS),MS1700。晶体学和相分数这些钢的特征是使用电子显微镜以及电子反向散射衍射对模型进行初始化的。使用杨氏模量,泊松比和流应力数据的综合集合来校准和验证模型。铁氧体和马氏体的模型参数使用两种钢的数据进行识别,并用于预测其他两种钢的行为。该模型捕获弹塑性单调行为,以及与大应变循环变形特性有关的特殊性,例如载荷反向时的非线性卸载,鲍辛格效应以及在应变反向过程中硬化速率的变化(基于演化的微观结构,包括演化)位错密度与晶体学晶粒取向的关系。此外,它还提供了有关反应力和位错an灭对DP钢循环变形的作用的见解。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号