首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A consistently coupled multiscale mechanical-electrochemical battery model with particle interaction and its validation
【24h】

A consistently coupled multiscale mechanical-electrochemical battery model with particle interaction and its validation

机译:具有粒子相互作用的一致多尺度机械电化学电池模型及其验证

获取原文
获取原文并翻译 | 示例
       

摘要

As an inherent multiscale structure, a continuum scale battery electrode is composed of many microscale particles. Currently it is generally assumed that each particle is isolated while the stress in a particle only affects solid diffusion. The lack of mechanical interaction between particles and effect of stress on the electrochemical reaction rate makes mechanics and electrochemistry uncoupled at the continuum scale: an applied continuum scale stress in the electrode has no effect on the spatial distribution of electrochemical reaction in the electrode and vice versa. This paper first presents a multiscale model that couples mechanics and electrochemistry consistently at the microscopic and continuum scales. The microscopic particle stress is a superposition of the intra-particle concentration gradient-induced stress and the particle interaction stress, with the latter being related to the continuum scale stress through a representative volume element. The electrochemical charge transfer kinetics is generalized with the stress effect. Diffusion in a particle is described by a chemical potential that includes stress and phase transition. In a parallel effort, we develop a direct three-dimensional particle network model, which consists of realistic active material particles. Unlike the multiscale model, there is no scale separation and homogenization in the particle network model: all particles are modeled explicitly with fully coupled three-dimensional mechanical-electrochemical equations and the finite element method. The results from the particle network model are accurate and can serve as a standard, but the size of particle network that can be calculated is limited due to high computational cost. Comparison of results from the multiscale model and from the particle network model shows that the multiscale model gives good, satisfying accuracy while reducing the computational cost dramatically in comparison to the three-dimensional particle network model. The multiscale model is a power tool to address various coupled problems in the electrode, from inter-particle crack growth to electrode structure design for high performance and long cycle life. (C) 2018 Elsevier Ltd. All rights reserved.
机译:作为固有的多尺度结构,连续尺度的电池电极由许多微尺度的颗粒组成。当前,通常假设每个颗粒是隔离的,而颗粒中的应力仅影响固体扩散。粒子之间缺乏机械相互作用以及应力对电化学反应速率的影响使得力学和电化学在连续谱上不耦合:电极中施加的连续谱应力对电极中电化学反应的空间分布没有影响,反之亦然。本文首先提出了一个多尺度模型,该模型在微观和连续尺度上一致地耦合了力学和电化学。微观颗粒应力是颗粒内浓度梯度引起的应力和颗粒相互作用应力的叠加,后者与通过代表性体积元素的连续尺度应力相关。通过应力效应可以概括电化学电荷转移动力学。粒子中的扩散由包括应力和相变的化学势来描述。同时,我们开发了直接的三维粒子网络模型,该模型由现实的活性材料粒子组成。与多尺度模型不同,粒子网络模型中没有尺度分离和均质化:所有粒子均使用完全耦合的三维机械电化学方程式和有限元方法进行显式建模。粒子网络模型的结果是准确的,可以用作标准,但是由于计算成本高,可以计算的粒子网络的大小受到限制。多尺度模型和粒子网络模型的结果比较表明,与三维粒子网络模型相比,多尺度模型具有良好的令人满意的准确性,同时大大降低了计算成本。多尺度模型是解决电极中各种耦合问题的动力工具,从粒子间裂纹扩展到电极结构设计,以实现高性能和长循环寿命。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号