首页> 外文期刊>Atmosphere >Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part II: Comparison of WRF/Chem and WRF/Chem-ROMS and Impacts of Air-Sea Interactions and Boundary Conditions
【24h】

Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia, Part II: Comparison of WRF/Chem and WRF/Chem-ROMS and Impacts of Air-Sea Interactions and Boundary Conditions

机译:在澳大利亚最近的野战中两种在线耦合的气象化学模型的多尺度应用,第二部分:WRF / Chem和WRF / Chem-ROMS的比较以及海海相互作用和边界条件的影响

获取原文
       

摘要

Air-sea interactions play an important role in atmospheric circulation and boundary layer conditions through changing convection processes and surface heat fluxes, particularly in coastal areas. These changes can affect the concentrations, distributions, and lifetimes of atmospheric pollutants. In this Part II paper, the performance of the Weather Research and Forecasting model with chemistry (WRF/Chem) and the coupled WRF/Chem with the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS) are intercompared for their applications over quadruple-nested domains in Australia during the three following field campaigns: The Sydney Particle Study Stages 1 and 2 (SPS1 and SPS2) and the Measurements of Urban, Marine, and Biogenic Air (MUMBA). The results are used to evaluate the impact of air-sea interaction representation in WRF/Chem-ROMS on model predictions. At 3, 9, and 27 km resolutions, compared to WRF/Chem, the explicit air-sea interactions in WRF/Chem-ROMS lead to substantial improvements in simulated sea-surface temperature (SST), latent heat fluxes (LHF), and sensible heat fluxes (SHF) over the ocean, in terms of statistics and spatial distributions, during all three field campaigns. The use of finer grid resolutions (3 or 9 km) effectively reduces the biases in these variables during SPS1 and SPS2 by WRF/Chem-ROMS, whereas it further increases these biases for WRF/Chem during all field campaigns. The large differences in SST, LHF, and SHF between the two models lead to different radiative, cloud, meteorological, and chemical predictions. WRF/Chem-ROMS generally performs better in terms of statistics and temporal variations for temperature and relative humidity at 2 m, wind speed and direction at 10 m, and precipitation. The percentage differences in simulated surface concentrations between the two models are mostly in the range of ±10% for CO, OH, and O 3 , ±25% for HCHO, ±30% for NO 2 , ±35% for H 2 O 2 , ±50% for SO 2 , ±60% for isoprene and terpenes, ±15% for PM 2.5 , and ±12% for PM 10 . WRF/Chem-ROMS at 3 km resolution slightly improves the statistical performance of many surface and column concentrations. WRF/Chem simulations with satellite-constrained boundary conditions (BCONs) improve the spatial distributions and magnitudes of column CO for all field campaigns and slightly improve those of the column NO 2 for SPS1 and SPS2, column HCHO for SPS1 and MUMBA, and column O 3 for SPS2 at 3 km over the Greater Sydney area. The satellite-constrained chemical BCONs reduce the model biases of surface CO, NO, and O 3 predictions at 3 km for all field campaigns, surface PM 2.5 predictions at 3 km for SPS1 and MUMBA, and surface PM 10 predictions at all grid resolutions for all field campaigns. A more important role of chemical BCONs in the Southern Hemisphere, compared to that in the Northern Hemisphere reported in this work, indicates a crucial need in developing more realistic chemical BCONs for O 3 in the relatively clean SH.
机译:通过改变对流过程和地表热通量,海气相互作用在大气环流和边界层条件中起着重要作用,特别是在沿海地区。这些变化会影响大气污染物的浓度,分布和寿命。在本第二部分的论文中,将天气与化学的天气研究和预报模型(WRF / Chem)以及耦合的WRF / Chem与区域海洋模型系统(ROMS)(WRF / Chem-ROMS)的性能进行了相互比较,以说明它们在在以下三个野外活动中,澳大利亚成为四重嵌套域:悉尼粒子研究的第1和第2阶段(SPS1和SPS2)以及城市,海洋和生物空气的测量(MUMBA)。结果用于评估WRF / Chem-ROMS中海气相互作用表示对模型预测的影响。与WRF / Chem相比,在3、9和27 km的分辨率下,WRF / Chem-ROMS中显着的海-气相互作用导致模拟海面温度(SST),潜热通量(LHF)和温度的显着提高。在所有三个野战期间,在统计和空间分布方面,海洋上的显热通量(SHF)。使用更精细的网格分辨率(3或9 km)可以有效地减少WRF / Chem-ROMS在SPS1和SPS2期间这些变量中的偏差,而在所有野战活动中进一步增加WRF / Chem的这些偏差。两种模型之间SST,LHF和SHF的巨大差异导致不同的辐射,云,气象和化学预测。 WRF / Chem-ROMS通常在2m处的温度和相对湿度,10m处的风速和方向以及降水的统计和时间变化方面表现更好。两种模型之间模拟表面浓度的百分比差异主要在CO,OH和O 3的±10%范围内,对于HCHO为±25%,对于NO 2为±30%,对于H 2 O 2为±35% ,对于SO 2为±50%,对于异戊二烯和萜烯为±60%,对于PM 2.5为±15%,对于PM 10为±12%。 WRF / Chem-ROMS在3 km的分辨率下可以稍微改善许多表面和色谱柱浓度的统计性能。使用卫星约束边界条件(BCON)进行的WRF / Chem模拟可改善所有野战的CO柱的空间分布和强度,并稍微改善SPS1和SPS2的NO 2柱,SPS1和MUMBA的HCHO柱以及O柱在大悉尼地区3公里处,SPS2收费3。受卫星约束的化学BCON减少了所有野战在3 km处的表面CO,NO和O 3预测的模型偏差,在3 km处对于SPS1和MUMBA的3 PM处的表面PM 2.5预测,以及在所有网格分辨率下对PM 10的表面PM 10预测的模型偏差。所有野战活动。与这项工作中报道的北半球相比,南半球化学BCON的更重要作用表明,在相对清洁的SH中为O 3开发更现实的化学BCON至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号