首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Sorption isotherm restricted by multilayer hindered adsorption and its relation to nanopore size distribution
【24h】

Sorption isotherm restricted by multilayer hindered adsorption and its relation to nanopore size distribution

机译:多层受阻吸附限制了吸附等温线及其与纳米孔尺寸分布的关系

获取原文
获取原文并翻译 | 示例
       

摘要

Hindered adsorbed layers completely filling the nanopores cause significant deviations from the classical BET isotherms for multimolecular adsorption of vapor in porous solids. Since the point of transition from free to hindered adsorption moves into wider nanopores as vapor pressure increases, the surface area exposed to vapor is decreased by an area reduction factor that decreases with increasing adsorbed volume, and thus also with increasing vapor pressure (or humidity). The area reduction factor does not affect the rates of the local process of direct adsorption or condensation of individual vapor or gas molecules, but it imposes a lateral constraint on the total area and volume of the free portion of the adsorption layer that is in direct contact with vapor. A reasonable assumption for the dependence of the area reduction factor on the number of molecular layers is a selfsimilar function, i.e., a power law. This leads to a sorption isotherm expressed in terms of polylogarithms (aka Jonquiere functions). The power-law exponent is a property that serves as an additional data fitting parameter, which is related to the pore size distribution. Compared to BET isotherm with the same initial slope, the proposed isotherm reduces the growth of the BET isotherm at low and intermediate humidity and the deviation increases with the exponent. The fitting of isotherm data is reduced to either a series of linear regressions or the minimization of a quadratic expression with respect to one parameter only. It is shown how to use the optimum fit to calculate the size (or width) distribution of nanopores 6 nm. Comparisons with several published isotherms and pore size data measured on hardened cement pastes show that the present theory gives excellent fits. Finally, the semi-empirical GAB adsorption model is considered, but its additional parameters are not adopted because they weaken the physical foundation and are not constants as they need to be varied empirically with temperature and, for cements, with the degree of hydration. (C) 2019 Elsevier Ltd. All rights reserved.
机译:完全填充纳米孔的受阻吸附层会导致与经典BET等温线大相径庭,而BET等温线则是多孔固体中蒸汽的多分子吸附。由于随着蒸汽压力的增加,从自由吸附到受阻吸附的过渡点会移动到更宽的纳米孔中,因此暴露于蒸汽的表面积会减小面积减小因子,该因子随吸附量的增加而减小,因此随着蒸汽压(或湿度)的增加而减小。面积减小因子不影响单个蒸气或气体分子的直接吸附或冷凝的局部过程的速率,但是它对直接接触的吸附层自由部分的总面积和体积施加了横向约束。与蒸气。关于面积减小因子对分子层数的依赖性的合理假设是自相似函数,即幂定律。这导致以多对数(又称Jonquiere函数)表示的吸附等温线。幂律指数是用作附加数据拟合参数的属性,该参数与孔径分布有关。与具有相同初始斜率的BET等温线相比,所提出的等温线降低了中低湿度下BET等温线的生长,并且偏差随指数增加。等温线数据的拟合减少为一系列线性回归或仅针对一个参数的二次表达式的最小化。它显示了如何使用最佳拟合来计算<6 nm的纳米孔的尺寸(或宽度)分布。与一些已发布的等温线和在硬化水泥浆上测得的孔径数据的比较表明,本理论具有很好的拟合度。最后,考虑了半经验GAB吸附模型,但未采用其附加参数,因为它们会削弱物理基础,并且不是常数,因为它们需要根据温度以及水泥的水化程度进行经验性的更改。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号