...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Buckling soft tensegrities: Fickle elasticity and configurational switching in living cells
【24h】

Buckling soft tensegrities: Fickle elasticity and configurational switching in living cells

机译:屈曲的柔软张力:活细胞的斑点弹性和构型转换

获取原文
获取原文并翻译 | 示例
           

摘要

Tensegrity structures are special architectures made by floating compressed struts kept together by a continuous system of tensioned cables. Their existence in a mechanically stable form is decided by the possibility of finding geometrical configurations such that prestressed tendons and bars can ensure self-equilibrium of the forces transmitted through the elastic network, the overall stiffness of which finally depends on both the rigidity of the compressed elements and the cables' pre-stress. The multiplicity of shapes that tensegrity structures can assume and their intrinsic capability to be deployable and assembled, so storing (and releasing) elastic energy, have motivated their success as paradigm-pioneeringly proposed three decades ago by the intuition of Donald E. Ingber- to explain some underlying mechanisms regulating dynamics of living cells. The interlaced structure of the cell cytoskeleton, constituted by actin microfilaments, intermediate filaments and microtubules which continuously change their spatial organization and pre-stresses through polymerization/depolymerization processes, seems in fact to steer migration, adhesion and cell division by obeying the tensegrity construct. Even though rough calculations lead to estimate discrepancies of less than one order of magnitude when comparing axial stiffness of actin filaments (cables) and microtubules (struts) and recent works have shown bent microtubules among stretched filaments, no one has yet tried to remove the standard hypothesis of rigid struts in tensegrity structures when used to idealize the cell cytoskeleton mechanical response. With reference to the 30-element tensegrity cell paradigm, we thus introduce both compressibility and bendability of the struts and accordingly rewrite the theory to simultaneously take into account geometrical non-linearity (i.e. large deformations) and hyper-elasticity of both tendons and bars, so abandoning the classical linear stress-strain constitutive assumptions. By relaxing the hypothesis of rigidity of the struts, we demonstrate that some quantitative confirmations and many related extreme and somehow counter-intuitive mechanical behaviors actually exploited by cells for storing/releasing energy, resisting to applied loads and deforming by modulating their overall elasticity and shape through pre-stress changes and instability-guided configurational switching, can be all theoretically found. It is felt that the proposed new soft-strut tensegrity model could pave the way for a wider use of engineering models in cell mechanobiology and in designing bio-inspired materials and soft robots. (C) 2018 Elsevier Ltd. All rights reserved.
机译:张力结构是由浮动的压缩支柱制成的特殊架构,这些支柱通过连续的张紧电缆系统保持在一起。它们以机械稳定形式存在的可能性取决于找到几何构型的可能性,这样预应力的筋和筋可以确保通过弹性网络传递的力的自平衡,而弹性的整体刚度最终取决于受压物体的刚度。元件和电缆的预应力。张力结构可以采用的多种形状以及其可部署和组装的固有能力,因此存储(和释放)弹性能,已激发了他们的成功,正如唐纳德·E·英格里(Donald E.解释了调节活细胞动力学的一些潜在机制。由肌动蛋白微丝,中间丝和微管组成的细胞骨架的交错结构,通过聚合/解聚过程不断改变其空间组织和预应力,实际上似乎是通过遵循张力构造来引导迁移,粘附和细胞分裂。尽管粗略的计算导致在比较肌动蛋白丝(电缆)和微管(支柱)的轴向刚度时估计差异小于一个数量级,并且最近的研究表明拉伸丝中的微管弯曲,但尚无人尝试删除标准当用于理想化细胞骨架力学反应时,在张力结构中的刚性支柱的假说。参照30元张力单元范例,我们同时介绍了支柱的可压缩性和可弯曲性,并因此重写了该理论,同时考虑了筋和杆的几何非线性(即大变形)和超弹性,因此放弃了经典的线性应力-应变本构假设。通过放宽支柱的刚性假设,我们证明了一些定量确认以及许多相关的极端和反直觉的机械行为,这些行为实际上是细胞利用来存储/释放能量,抵抗施加的载荷并通过调节其整体弹性和形状而变形的通过预应力变化和不稳定性引导的配置转换,理论上都可以找到。可以感觉到,所提出的新的软支撑张力模型可以为在细胞力学生物学以及设计生物启发性材料和软机器人中广泛使用工程模型铺平道路。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2019年第3期|299-324|共26页
  • 作者单位

    Univ Napoli Federico II, Dept Struct Engn & Architecture, Naples, Italy|Natl Res Council Italy, Inst Appl Sci & Intelligent Syst, Rome, Italy;

    Univ Trento, Dept Civil Environm & Mech Engn, Trento, Italy;

    Univ Napoli Federico II, Dept Struct Engn & Architecture, Naples, Italy;

    Univ Napoli Federico II, Dept Struct Engn & Architecture, Naples, Italy;

    Univ Trento, Dept Civil Environm & Mech Engn, Trento, Italy|Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA|Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA;

    Univ Trento, Dept Civil Environm & Mech Engn, Trento, Italy|Queen Mary Univ, Sch Engn & Mat Sci, London, England|Univ Trento, Lab Bioinspired & Graphene Nanomech, Trento, Italy|Edoardo Amaldi Fdn, Ket Lab, Italian Space Agcy, Rome, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号