首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A micro-macro approach to rubber-like materials. Part Ⅲ: The micro-sphere model of anisotropic Mullins-type damage
【24h】

A micro-macro approach to rubber-like materials. Part Ⅲ: The micro-sphere model of anisotropic Mullins-type damage

机译:对橡胶状材料的微宏观方法。第三部分:各向异性Mullins型损伤的微球模型

获取原文
获取原文并翻译 | 示例
       

摘要

A micromechanically based non-affine network model for finite rubber elasticity and viscoelasticity was discussed in Parts I and II [Miehe, C., Goektepe, S., Lulei, F., 2004. A micro-macro approach to rubber-like materials. Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617-2660; Miehe, C., Goektepe, S., 2005. A micro-macro approach to rubber-like materials. Part II: Viscoelasticity model for polymer networks. J. Mech. Phys. Solids, published on-line, doi:10.1016/j.jmps.2005.04.006.] of this work. In this follow-up contribution, we further extend the micro-sphere network model such that it incorporates a deformation-induced softening commonly referred to as the Mullins effect. To this end, a continuum formulation is constructed by a superimposed modeling of a crosslink-to-crosslink (CC) and a particle-to-particle (PP) network. The former is described by the non-affine elastic network model proposed in Part Ⅰ. The Mullins-type damage phenomenon is embedded into the PP network and micromechanically motivated by a breakdown of bonds between chains and filler particles. Key idea of the constitutive approach is a two-step procedure that includes (ⅰ) the set up of micromechanically based constitutive models for a single chain orientation and (ⅱ) the definition of the macroscopic stress response by a directly evaluated homogenization of state variables defined on a micro-sphere of space orientations. In contrast to previous works on the Mullins effect, our formulation inherently describes a deformation-induced anisotropy of the damage as observed in experiments. We show that the experimentally observed permanent set in stress-strain diagrams is achieved by our model in a natural way as an anisotropy effect. The performance of the model is demonstrated by means of several numerical experiments including the solution of boundary-value problems.
机译:有限的橡胶弹性和粘弹性的基于微机械的非仿射网络模型已在第I部分和第II部分中进行了讨论[Miehe,C.,Goektepe,S.,Lulei,F.,2004。一种对橡胶状材料的微宏观方法。第一部分:橡胶弹性的非仿射微球模型。 J.机甲物理固体52,2617-2660; Miehe,C.,Goektepe,S.,2005年。对橡胶状材料的微观研究。第二部分:聚合物网络的粘弹性模型。 J.机甲物理固体,在线出版,doi:10.1016 / j.jmps.2005.04.006。]。在此后续贡献中,我们进一步扩展了微球网络模型,使其包含了变形引起的软化作用,通常称为穆林斯效应。为此,通过交联至交联(CC)和颗粒间(PP)网络的叠加建模来构建连续体配方。前者由第一部分提出的非仿射弹性网络模型描述。 Mullins型损坏现象被嵌入到PP网络中,并由于链和填料颗粒之间的键断裂而受到微机械作用。本构方法的关键思想是一个两步过程,其中包括(ⅰ)为单链取向建立基于微机械的本构模型,以及(ⅱ)通过直接评估定义的状态变量的均质化来定义宏观应力响应在空间取向的微球上。与之前关于Mullins效应的工作相反,我们的公式固有地描述了在实验中观察到的变形引起的损伤各向异性。我们表明,通过应力应变图中的实验观察到的永久变形是由我们的模型作为各向异性效应以自然方式实现的。该模型的性能通过包括边界值问题求解在内的数个数值实验得以证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号