首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys
【24h】

Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys

机译:形状记忆合金中马氏体重新取向和孪生的本构方程

获取原文
获取原文并翻译 | 示例
       

摘要

A crystal-inelasticity-based constitutive model for martensitic reorientation and detwinning in shape-memory alloys (SMAs) has been developed from basic thermodynamics principles. The model has been implemented in a finite-element program by writing a user-material subroutine. We perform two sets of finite-element simulations to model the behavior of polycrystalline SMAs: (1) The full finite-element model where each finite element represents a collection of martensitic microstructures which originated from within an austenite single crystal, chosen from a set of crystal orientations that approximates the initial austentic crystallographic texture. The macroscopic stress-strain responses are calculated as volume averages over the entire aggregate: (2) The Taylor model (J. Inst. Metals 62 (1938) 32) where an integration point in a finite element represents a material point which consist of sets of martensitic microstructures which originated from within, respective austenite single-crystals. Here the macroscopic stress-strain responses are calculated through a homogenization scheme. Experiments in tension and compression were conducted on textured polycrystalline Ti-Ni rod initially in the martensitic phase by Xie et al (Acta Mater. 46 (1998) 1989). The material parameters for the constitutive model were calibrated by fitting the tensile stress-strain response from a full finite-element calculation of a polycrystalline aggregate to the simple tension experiment. With the material parameters calibrated the predicted stress-strain curve for simple compression is in very good accord with the corresponding experiment. By comparing the simulated stress-strain response in simple tension and simple compression it is shown that the constitutive model is able to predict the observed tension-compression asymmetry exhibited by polycrystalline Ti-Ni to good accuracy. Furthermore, our calculations also show that the macroscopic stress-strain response depends strongly on the initial martensitic microstructure and crystallographic texture of the material. We also show that the Taylor model predicts the macroscopic stress-strain curves in simple tension and simple compression reasonably well. Therefore, it may be used as a relatively inexpensive computational tool for the design of components made from shape-memory materials.
机译:基于基本的热力学原理,已经建立了基于结晶非弹性的形状记忆合金(SMAs)中马氏体重新定向和孪生的本构模型。通过编写用户材料子例程,该模型已在有限元程序中实现。我们执行了两组有限元模拟来模拟多晶SMA的行为:(1)完整的有限元模型,其中每个有限元代表从奥氏体单晶内部产生的马氏体微观结构的集合,该组织从一组近似于初始奥氏体晶体学纹理的晶体取向。宏观应力-应变响应计算为整个集合体的体积平均值:(2)泰勒模型(J. Inst。Metals 62(1938)32),其中有限元中的积分点表示包含点集的材料点马氏体的微观结构,它们分别来自内部的奥氏体单晶。在这里,宏观应力-应变响应是通过均化方案计算的。 Xie等人(Acta Mater。46(1998)1989)最初在马氏体相中对织构化的多晶Ti-Ni棒进行了拉伸和压缩实验。本构模型的材料参数是通过将多晶骨料的完整有限元计算与简单的拉伸实验拟合而得出的拉伸应力-应变响应进行校准的。通过校准的材料参数,简单压缩的预测应力-应变曲线与相应的实验非常吻合。通过比较简单拉伸和简单压缩下的模拟应力-应变响应,表明本构模型能够预测多晶Ti-Ni表现出的观察到的拉伸-压缩不对称性,从而具有良好的准确性。此外,我们的计算还表明,宏观应力应变响应在很大程度上取决于材料的初始马氏体微观结构和晶体织构。我们还表明,泰勒模型可以很好地预测简单拉伸和简单压缩下的宏观应力-应变曲线。因此,它可以用作设计形状记忆材料制成的组件的相对便宜的计算工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号