首页> 外文学位 >Martensitic phase transformations in shape-memory alloys: Constitutive modeling and numerical simulation.
【24h】

Martensitic phase transformations in shape-memory alloys: Constitutive modeling and numerical simulation.

机译:形状记忆合金中的马氏体相变:本构模型和数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

A continuum-level constitutive model for martensitic phase transformations in shape-memory alloys (SMAs) is developed in the framework of irreversible thermodynamics with internal variables. The thermodynamic framework is used to gain insight into the effect of evolving internal variables (which account for the state of the phase transformation) on the driving force for the phase changes and, consequently, on the overall macroscopic material stress-strain response.; As an important class of active materials, SMAs derive unique properties from martensitic phase transformations and are used in a wide variety of applications including sensors, actuators, and medical devices such as stents. These unique properties, such as pseudoelasticity and the shape-memory effect, are a result of a solid-to-solid phase transformation, which occurs on the level of the crystal lattice. Although the underlying mechanism for the phase transformation is microscopic, a macroscopic continuum-level description is the ideal choice to model SMAs for use in applications on the size scale of devices. Therefore, a constitutive model is required that couples the microscopic phenomena to the macroscopic response. A finite-element implementation incorporating the SMA material model (an Abaqus UMAT) has been developed to perform numerical simulations of the stress-strain response of SMA single crystals. A backward Euler integration with Newton iteration of the nonlinear rate equations is employed to integrate the constitutive equations at each of the finite-element integration points to determine the current state of the transformation during three-dimensional, non-linear, finite-element simulations. The derivation of an analytical expression for the material stiffness tensor required as a UMAT output is also discussed. Utilizing an implicit integration scheme with analytical derivatives yields a computationally efficient algorithm.; From the numerical simulations the effect that the evolving elastic properties have on the driving force is shown to significantly affect the overall stress-strain response of single crystal SMAs. Additionally, the effect of ambient temperature the tension-compression asymmetry associated with the pseudoelastic stress-strain response (and its dependence on the orientation of the loading axis relative to various crystallographic axes), as well as the behavior of SMAs around a stress concentration are also discussed.
机译:在具有内部变量的不可逆热力学框架下,开发了形状记忆合金(SMA)中马氏体相变的连续水平本构模型。热力学框架用于深入了解内部变量的演变(其解释了相变的状态)对相变驱动力的影响,因此对宏观材料的整体应力应变响应也有影响。作为重要的一类活性材料,SMA从马氏体相变中获得独特的性能,并被广泛用于各种应用中,包括传感器,执行器和支架等医疗设备。这些独特的特性(例如伪弹性和形状记忆效应)是固-固相变的结果,发生在晶格的水平。尽管用于相变的基本机制是微观的,但宏观连续体级别的描述是为在设备规模规模的应用中使用的SMA建模的理想选择。因此,需要将微观现象与宏观响应耦合的本构模型。已经开发了一种包含SMA材料模型(Abaqus UMAT)的有限元实现,以执行SMA单晶的应力应变响应的数值模拟。使用非线性速率方程的牛顿迭代的反向Euler积分对每个有限元积分点的本构方程进行积分,以确定三维,非线性,有限元模拟过程中转换的当前状态。还讨论了作为UMAT输出所需的材料刚度张量的解析表达式的推导。将隐式积分方案与解析导数一起使用会产生一种计算有效的算法。从数值模拟中可以看出,不断发展的弹性特性对驱动力的影响将显着影响单晶SMA的整体应力应变响应。此外,环境温度的影响,与拟弹性应力应变响应相关的拉伸压缩不对称性(及其对载荷轴相对于各种结晶轴的取向的依赖性)以及SMA在应力集中的行为还讨论了。

著录项

  • 作者

    Jannetti, Carl V.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号