首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Dynamic Toughness In Elastic Nonlinear Viscous Solids
【24h】

Dynamic Toughness In Elastic Nonlinear Viscous Solids

机译:弹性非线性粘性固体中的动态韧性

获取原文
获取原文并翻译 | 示例
       

摘要

This work addresses the interrelationship among dissipative mechanisms-material separation in the fracture process zone (FPZ), nonelastic deformation in the surrounding background material and kinetic energy-and how they affect the macroscopic dynamic fracture toughness as well as the limiting crack speed in strain rate sensitive materials. To this end, a micromechanics-based model for void growth in a nonlinear viscous solid is incorporated into a microporous strip of cell elements that forms the FPZ. The latter is surrounded by background material described by conventional constitutive relations. In the first part of the paper, the background material is assumed to be purely elastic. Here, the computed dynamic fracture toughness is a convex function of crack velocity. In the second part, the background material as well as the FPZ are described by similar rate-sensitivity parameters. Voids grow in the strain rate strengthened FPZ as the crack velocity increases. Consequently, the work of separation increases. By contrast, the inelastic dissipation in the background material appears to be a concave function of crack velocity. At the lower crack velocity regime, where dissipation in the background material is dominant, toughness decreases as crack velocity increases. At high crack velocities, inelastic deformation enhanced by the inertial force can cause a sharp increase in toughness. Here, the computed toughness increases rapidly with crack velocity. There exist regimes where the toughness is a non-monotonic function of the crack velocity. Two length scales-the width of the FPZ and the ratio of the shear wave speed to the reference strain rate-can be shown to strongly affect the dynamic fracture toughness. Our computational simulations can predict experimental data for fracture toughness vs. crack velocity reported in several studies for amorphous polymeric materials.
机译:这项工作解决了耗散机制之间的相互关系-断裂过程区(FPZ)中的材料分离,周围背景材料中的非弹性变形和动能-以及它们如何影响宏观动态断裂韧性以及极限应变速率下的裂纹速度敏感材料。为此,将用于非线性粘性固体中空隙生长的基于微力学的模型并入形成FPZ的细胞元件微孔带中。后者被常规本构关系描述的背景材料包围。在本文的第一部分中,假定背景材料是纯弹性的。在此,计算出的动态断裂韧性是裂纹速度的凸函数。在第二部分中,背景材料以及FPZ由相似的速率敏感度参数描述。随着裂纹速度的增加,空洞的应变率增强了FPZ。因此,分离工作增加。相比之下,背景材料中的非弹性耗散似乎是裂纹速度的凹函数。在较低的裂纹速度状态下,背景材料中的耗散占主导,而韧性随着裂纹速度的增加而降低。在高裂纹速度下,由惯性力增强的非弹性变形会导致韧性急剧增加。在此,计算出的韧性随裂纹速度而迅速增加。在某些情况下,韧性是裂纹速度的非单调函数。可以显示出两个长度标尺-FPZ的宽度和剪切波速度与参考应变率的比率-强烈影响动态断裂韧性。我们的计算仿真可以预测无定形聚合材料在多项研究中报告的断裂韧性与裂纹速度的实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号