首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Karman plates and beams
【24h】

A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Karman plates and beams

机译:具有与旋转梯度有关的应变能的受约束的有限变形弹性固体的模型,并且专门用于冯·卡曼板和梁

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of this paper is to develop the governing equations for a fully constrained finitely deforming hyperelastic Cosserat continuum where the directors are constrained to rotate with the body rotation. This is the generalization of small deformation couple stress theories and would be useful for developing mathematical models for an elastic material with embedded stiff short fibers or inclusions (e.g., materials with carbon nanotubes or nematic elastomers, cellular materials with oriented hard phases, open cell foams, and other similar materials), that account for certain longer range interactions. The theory is developed as a limiting case of a regular Cosserat elastic material where the directors are allowed to rotate freely by considering the case of a high "rotational mismatch energy". The theory is developed using the formalism of Lagrangian mechanics, with the static case being based on Castigliano's first theorem. By considering the stretch U and the rotation R as additional independent variables and using the polar decomposition theorem as an additional constraint equation, we obtain the governing and as well as the boundary conditions for finite deformations. The resulting equations are further specialized for plane strain and axisymmetric finite deformations, deformations of beams and plates with small strain and moderate rotation, and for small deformation theories. We also show that the boundary conditions for this theory involve "surface tension" like terms due to the higher gradients in the strain energy function. For beams and plates, the rotational gradient dependent strain energy does not require additional variables (unlike Cosserat theories) and additional differential equations; nor do they raise the order of the differential equations, thus allowing us to include a material length scale dependent response at no extra "computational cost" even for finite deformation beam/plate theories
机译:本文的目的是开发一个完全约束的有限变形超弹性Cosserat连续体的控制方程,其中导矢被约束为随身体旋转而旋转。这是小变形耦合应力理论的概括,对于开发具有嵌入的硬质短纤维或夹杂物的弹性材料(例如,具有碳纳米管或向列弹性体的材料,具有定向硬相的多孔材料,开孔泡沫)的数学模型很有用以及其他类似的材料),这说明了某些更长距离的相互作用。该理论是作为普通Cosserat弹性材料的极限情况而开发的,其中考虑到高“旋转失配能”的情况,允许导向器自由旋转。该理论是使用拉格朗日力学的形式主义发展起来的,静态情况是基于Castigliano的第一个定理。通过将拉伸量U和旋转量R作为额外的独立变量,并使用极坐标分解定理作为额外的约束方程式,我们获得了有限变形的控制条件和边界条件。所得方程进一步专门用于平面应变和轴对称有限变形,具有较小应变和适度旋转的梁和板的变形以及较小的变形理论。我们还表明,由于应变能函数中的较高梯度,该理论的边界条件涉及“表面张力”之类的术语。对于梁和板,与旋转梯度有关的应变能不需要附加变量(不同于Cosserat理论)和附加微分方程。它们也不会提高微分方程的阶数,因此即使对于有限变形梁/板理论,也允许我们包括与材料长度比例相关的响应,而没有额外的“计算成本”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号