首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Mechanobiology of interfacial growth
【24h】

Mechanobiology of interfacial growth

机译:界面生长的力学生物学

获取原文
获取原文并翻译 | 示例
       

摘要

A multiscale analysis integrating biomechanics and mechanobiology is today required for deciphering the crosstalk between biochemistry, geometry and elasticity in living materials. In this paper we derive a unified thermomechanical theory coupling growth processes with mass transport phenomena across boundaries and/or material interfaces. Inside a living system made by two contiguous bodies with varying volumes, an interfacial growth mechanism is considered to force fast but continuous variations of the physical fields inside a narrow volume across the material interface. Such a phenomenon is modelled deriving homogenized surface fields on a growing non-material discontinuity, possibly including a singular edge line. A number of balance laws is derived for imposing the conservation of the thermomechanical properties of the biological system. From thermodynamical arguments we find that the normal displacement of the non-material interface is governed by the jump of a new form of material mechanical-energy flux, also involving the kinetic energies and the mass fluxes. Furthermore, the configurational balance indicates that the surface Eshelby tensor is the tangential stress measure driving the material inhomogeneities on the non-material interface. Accordingly, stress-dependent evolution laws for bulk and interfacial growth processes are derived for both volume and surface fields.The proposed thermomechanical theory is finally applied to three biological system models. The first two examples are focused on stress-free growth problems, concerning the morphogenesis of animal horns and of seashells. The third application finally deals with the stress-driven surface evolution of avascular tumours with heterogeneous structures. The results demonstrate that the proposed theory can successfully model those biological systems where growth and mass transport phenomena interact at different length-scales. Coupling biological, mechanical and geometrical factors, the proposed framework represents a powerful multiscale approach for building predictive tools to be used in biological and medical sciences.
机译:如今,需要一种将生物力学和力学生物学相结合的多尺度分析来解密生物化学,生物材料中的几何学和弹性之间的串扰。在本文中,我们得出一个统一的热力学理论,将生长过程与跨边界和/或材料界面的传质现象耦合在一起。在由两个具有不同体积的连续物体构成的生命系统内部,界面生长机制被认为可以迫使狭窄空间内的物理场快速但连续地变化穿过整个材料界面。对这种现象进行了建模,得出了在不断增长的非材料间断点(可能包括奇异的边线)上的均质化表面场。导出了许多平衡定律,以强加保护生物系统的热机械性能。从热力学论证中我们发现,非材料界面的法向位移是由一种新形式的材料机械能通量的跃迁所控制的,该形式也涉及动能和质量通量。此外,构型平衡表明表面Eshelby张量是驱动非材料界面上的材料不均匀性的切向应力量度。据此,推导了体积和界面场在体积和界面生长过程中与应力有关的演化规律。所提出的热力学理论最终被应用于三种生物系统模型。前两个示例着重于无压力的生长问题,涉及动物角和贝壳的形态发生。第三项申请最终涉及具有异质结构的血管肿瘤的应力驱动表面演变。结果表明,所提出的理论可以成功地模拟那些生长和质量迁移现象在不同长度尺度上相互作用的生物系统。结合生物学,机械和几何因素,提出的框架代表了一种强大的多尺度方法,可用于构建要在生物学和医学科学中使用的预测工具。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2013年第3期|852-872|共21页
  • 作者单位

    Universite Pierre et Marie Curie - Paris 6, institut Jean le Rond d'Alembert, UMR CNRS 7190, 4 place Jussieu, Case 162, 75005 Paris, France;

    Dipartimento di Matematica, Politecnico ii Torino, c.so Duca degli Abruzzi 24, 10123 Torino, Italy;

    Universite Pierre et Marie Curie - Paris 6, institut Jean le Rond d'Alembert, UMR CNRS 7190, 4 place Jussieu, Case 162, 75005 Paris, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    mechanobiology; morphogenesis; biological growth; remodelling; phase-transition dynamics;

    机译:机械生物学形态发生生物生长重塑相变动力学;
  • 入库时间 2022-08-18 03:00:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号