首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Phase field approach to martensitic phase transformations with large strains and interface stresses
【24h】

Phase field approach to martensitic phase transformations with large strains and interface stresses

机译:具有大应变和界面应力的马氏体相变的相场方法

获取原文
获取原文并翻译 | 示例
       

摘要

Thermodynamically consistent phase field theory for multivariant martensitic transformations, which includes large strains and interface stresses, is developed. Theory is formulated in a way that some geometrically nonlinear terms do not disappear in the geometrically linear limit which in particular allowed us to introduce the expression for the interface stresses consistent with the sharp interface approach. Namely, for the propagating nonequilibrium interface, a structural part of the interface Cauchy stresses reduces to a biaxial tension with the magnitude equal to the temperature-dependent interface energy. Additional elastic and viscous contributions to the interface stresses do not require separate constitutive equations and are determined by solution of the coupled system of phase field and mechanics equations. Ginzburg-Landau equations are derived for the evolution of the order parameters and temperature evolution equation. Boundary conditions for the order parameters include variation of the surface energy during phase transformation. Because elastic energy is defined per unit volume of unloaded (intermediate) configuration, additional contributions to the Ginzburg-Landau equations and the expression for entropy appear, which are important even for small strains. A complete system of equations for fifth- and sixth-degree polynomials in terms of the order parameters is presented in the reference and actual configurations. An analytical solution for the propagating interface and critical martensitic nucleus which includes distribution of components of interface stresses has been found for the sixth-degree polynomial. This required resolving a fundamental problem in the interface and surface science: how to define the Gibbsian dividing surface, i.e., the sharp interface equivalent to the finite-width interface. An unexpected, simple solution was found utilizing the principle of static equivalence. In fact, even two equations for determination of the dividing surface follow from the equivalence of the resultant force and zero-moment condition. For the obtained analytical solution for the propagating interface, both conditions determine the same dividing surface, i.e., the theory is noncontradictory. A similar formalism can be developed for the phase field approach to diffusive phase transformations described by the Cahn-Hilliard equation, twinning, dislocations, fracture, and their interaction.
机译:建立了包括大应变和界面应力在内的多变量马氏体相变的热力学一致相场理论。理论的制定方式是,一些几何非线性项不会在几何线性极限内消失,这尤其使我们能够引入与尖锐界面方法一致的界面应力表达式。即,对于传播的非平衡界面,柯西应力的界面结构部分减小到双轴张力,其大小等于取决于温度的界面能。对界面应力的附加弹性和粘性贡献不需要单独的本构方程,而是由相场和力学方程的耦合系统的解确定的。推导了Ginzburg-Landau方程用于阶数参数和温度演化方程的演化。阶数参数的边界条件包括相变过程中表面能的变化。因为弹性能量是由单位体积的空载(中间)构型定义的,所以会出现对Ginzburg-Landau方程和熵表达式的额外贡献,这对于小应变也很重要。在参考和实际配置中提供了有关阶次参数的五阶和六阶多项式方程的完整方程组。对于第六级多项式,已经找到了传播界面和临界马氏体核的解析解,其中包括界面应力分量的分布。这需要解决界面和表面科学中的一个基本问题:如何定义吉布斯分割表面,即与有限宽度界面等效的尖锐界面。利用静态等效原理发现了一个出乎意料的简单解决方案。实际上,从合力和零力矩条件的等价关系中,甚至可以用两个方程式来确定分割表面。对于所获得的传播界面的解析解,两个条件都确定了相同的分隔面,即该理论是不矛盾的。对于Cahn-Hilliard方程描述的扩散相变,孪晶,位错,断裂及其相互作用,可以为相场方法开发类似的形式主义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号