首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F=F~eF~p
【24h】

Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F=F~eF~p

机译:有限运动学框架中晶体可塑性的运动学描述:F = F〜eF〜p的微观力学理解

获取原文
获取原文并翻译 | 示例
       

摘要

The plastic component of the deformation gradient plays a central role in finite kinematic models of plasticity. However, its characterization has been the source of extended debates in the literature and many important issues still remain unresolved. Some examples are the micromechanical understanding of F= F~eF~p with multiple active slip systems, the uniqueness of the decomposition, or the characterization of the plastic deformation without reference to the so-called intermediate configuration. In this paper, we shed some light to these issues via a two-dimensional kinematic analysis of the plastic deformation induced by discrete slip surfaces and the corresponding dislocation structures. In particular, we supply definitions for the elastic and plastic components of the deformation gradient as a function of the active slip systems without any a priori assumption on the decomposition of the total deformation gradient. These definitions are explicitly and uniquely given from the microstructure and do not make use of any unrealizable intermediate configuration. The analysis starts from a semi-continuous mathematical description of the deformation at the microscale, where the displacements are considered continuous everywhere in the domain except at the discrete slip surfaces, over which there is a displacement jump. At this scale, where the microstructure is resolved, the deformation is uniquely characterized from purely kinematic considerations and the elastic and plastic components of the deformation gradient can be defined based on physical arguments. These quantities are then passed to the continuous limit via homo-genization, i.e. by increasing the number of slip surfaces to infinity and reducing the lattice parameter to zero. This continuum limit is computed for several illustrative examples, where the well-known multiplicative decomposition of the total deformation gradient is recovered. Additionally, by similar arguments, an expression of the dislocation density tensor is obtained as the limit of discrete dislocation densities which are well characterized within the semi-continuous model.
机译:变形梯度的塑性成分在有限的塑性运动学模型中起着核心作用。然而,其特征一直是文献中广泛辩论的源头,许多重要问题仍未解决。一些示例是对具有多个活动滑移系统的F = F〜eF〜p的微观力学理解,分解的唯一性或不涉及所谓的中间构型的塑性变形的表征。在本文中,我们通过二维运动学分析了离散的滑动表面和相应的位错结构引起的塑性变形,从而为这些问题提供了一些启示。特别是,我们提供了作为主动滑移系统函数的变形梯度的弹性和塑性分量的定义,而无需对总变形梯度的分解进行任何先验假设。这些定义是从微观结构明确而唯一地给出的,并且不使用任何无法实现的中间配置。分析从微观尺度上的变形的半连续数学描述开始,其中位移被认为是在域中的所有位置都是连续的,除了离散的滑动表面(在该滑动表面上存在位移跳跃)。在这种尺度下,微观结构得以解析,从纯粹的运动学考虑,就可以唯一地表征变形,并且可以基于物理参数来定义变形梯度的弹性和塑性分量。然后通过均化,即通过将滑动表面的数量增加到无穷大并将晶格参数减小到零,将这些数量传递到连续极限。这个连续极限是为几个说明性示例计算的,其中恢复了总变形梯度的众所周知的乘法分解。另外,通过类似的论点,获得位错密度张量的表达式作为离散位错密度的极限,其在半连续模型中很好地表征。

著录项

  • 来源
  • 作者

    C. Reina; S. Conti;

  • 作者单位

    Lawrence Livermore National Laboratory, Livermore, CA 94550, United States,Institut fur Angewandte Mathematik, Universitat Bonn, 53115 Bonn, Germany,University of Pennsylvania, Philadelphia, PA 19104-6315, United States;

    Institut fur Angewandte Mathematik, Universitat Bonn, 53115 Bonn, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Crystal plasticity; Finite kinematics; Dislocation density tensor;

    机译:晶体可塑性;有限运动学;位错密度张量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号