首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations
【24h】

Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations

机译:通过分子动力学模拟研究玻璃态无定形聚合物中的裂纹

获取原文
获取原文并翻译 | 示例
           

摘要

In many glassy amorphous polymers, localisation of deformation during loading leads to crazes. Crazes are crack like features whose faces are bridged either by fibrils or a cellular network of voids and fibrils. While formation of crazes is aided by the presence of surface imperfections and embedded dust particles, in this work, we focus on intrinsic crazes that form spontaneously in the volume of the material. We perform carefully designed molecular dynamics simulations on well equilibrated samples of a model polymer with a view to gaining insights into certain incompletely understood aspects of the crazing process. These include genesis of the early nanovoids leading to craze nucleation, mechanisms of stabilising the cellular or fibrillar structure and the competition between chain scission and chain disentanglement in causing the final breakdown of the craze. Additionally, we identify and enumerate clusters of entanglement points with high functionality as effective topological constraints on macromolecular chains. We show that regions with low density of entanglement clusters serve as sites for nanovoid nucleation under high mean stress. Growth occurs by the repeated triggering of cavitation instabilities above a growing void. The growth of the void is aided by disentanglement in and flow of entanglements away from the cavitating region. Finally, for the chain lengths chosen, scission serves to supply short chains to the growing craze but breakdown occurs by complete disentanglement of the chains. In fact, most of the energy supplied to the material seems to be used in causing disentanglements and very little energy is required to create a stable fibril.
机译:在许多玻璃态的无定形聚合物中,加载过程中的变形局部会导致裂纹。开裂是类似裂纹的特征,其特征是其表面通过原纤维或空隙和原纤维的蜂窝网络桥接。尽管表面缺陷和嵌入的灰尘颗粒有助于形成裂纹,但在这项工作中,我们着眼于在材料体积中自发形成的固有裂纹。我们对模型聚合物的平衡良好的样品进行精心设计的分子动力学模拟,以期深入了解某些未完全理解的裂纹过程。这些包括导致开裂成核的早期纳米空隙的形成,稳定细胞或原纤维结构的机制以及在导致开裂的最终破裂中断链和解链的竞争。此外,我们确定并枚举具有高功能性的缠结点簇,作为对高分子链的有效拓扑约束。我们表明,低纠缠簇密度的区域充当高平均应力下纳米空隙成核的位置。生长是通过在空洞上方反复触发空化不稳定性而发生的。空隙的生长是由纠缠和脱离空化区的流动所辅助的。最后,对于选择的链条长度来说,劈裂可以为不断增长的热潮提供短链,但由于链条的完全解开而发生断裂。实际上,提供给材料的大部分能量似乎都用于引起解缠结,并且产生稳定的原纤维所需的能量很小。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2015年第4期|123-145|共23页
  • 作者单位

    Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India;

    Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号