...
首页> 外文期刊>Journal of the Mathematical Society of Japan >G-expectation weighted Sobolev spaces, backward SDE and path dependent PDE
【24h】

G-expectation weighted Sobolev spaces, backward SDE and path dependent PDE

机译:G期望加权Sobolev空间,后向SDE和与路径相关的PDE

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Beginning from a space of smooth, cylindrical and non-anticipative processes defined on a Wiener probability space (Ω,F, P), we introduce a P-weighted Sobolev space, or "P-Sobolev space", of non-anticipative path-dependent processes u = u(t, ω) such that the corresponding Sobolev derivatives D_t + (1/2)Δ_x and D_x u of Dupire's type are well defined on this space. We identify each element of this Sobolev space with the one in the space of classical L_P~p integrable Ito's process. Consequently, a new path-dependent Ito's formula is applied to all such Ito processes. It follows that the path-dependent nonlinear Feynman-Kac formula is satisfied for most L_P~p-solutions of backward SDEs: each solution of such BSDE is identified with the solution of the corresponding quasi-linear path-dependent PDE (PPDE). Rich and important results of existence, uniqueness, mono-tonicity and regularity of BSDEs, obtained in the past decades can be directly applied to obtain their corresponding properties in the new fields of PPDEs. In the above framework of P-Sobolev space based on the Wiener probability measure P, only the derivatives D_t + (1/2)Δ_x and D_x u are well-defined and well-integrated. This prevents us from formulating and solving a fully nonlinear PPDE. We then replace the linear Wiener expectation E_P by a sub-linear G-expectation E~G and thus introduce the corresponding G-expectation weighted Sobolev space, or "G-Sobolev space", in which the derivatives D_x u, D_x u and D_x~2 u are all well defined separately. We then formulate a type of fully nonlinear PPDEs in the G-Sobolev space and then identify them to a type of backward SDEs driven by G-Brownian motion.
机译:从在Wiener概率空间(Ω,F,P)上定义的光滑,圆柱形和非预期过程的空间开始,我们引入非预期路径的P加权Sobolev空间或“ P-Sobolev空间”,从属过程u = u(t,ω),从而在此空间上很好地定义了Dupire类型的相应Sobolev导数D_t +(1/2)Δ_x和D_x u。我们用经典的L_P〜p可积Ito过程中的那个来标识此Sobolev空间的每个元素。因此,新的与路径相关的Ito公式将应用于所有此类Ito流程。因此,对于后向SDE的大多数L_P〜p解,满足了与路径有关的非线性Feynman-Kac公式:此类BSDE的每个解决方案都通过相应的准线性与路径有关的PDE(PPDE)的解决方案进行标识。过去几十年中获得的BSDE存在,唯一性,单调性和规则性的丰富而重要的结果可以直接应用于在PPDEs的新领域中获得其相应的特性。在以上基于维纳概率测度P的P-Sobolev空间框架中,只有导数D_t +(1/2)Δ_x和D_x u定义明确且集成良好。这使我们无法制定和求解完全非线性的PPDE。然后,我们用次线性G期望E〜G代替线性维纳期望E_P,从而引入相应的G期望加权Sobolev空间或“ G-Sobolev空间”,其中导数D_x u,D_x u和D_x 〜2 u分别定义良好。然后,我们在G-Sobolev空间中公式化一类完全非线性的PPDE,然后将它们识别为由G-布朗运动驱动的一类反向SDE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号