...
首页> 外文期刊>Journal of the American Chemical Society >Metal-Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation
【24h】

Metal-Organic Framework Membranes Encapsulating Gold Nanoparticles for Direct Plasmonic Photocatalytic Nitrogen Fixation

机译:封装金纳米颗粒的金属 - 有机框架膜用于直接等离子体光催化氮固定

获取原文
获取原文并翻译 | 示例
           

摘要

Photocatalytic nitrogen fixation reaction can harvest the solar energy to convert the abundant but inert N_2 into NH_3. Here, utilizing metal-organic framework (MOF) membranes as the ideal assembly of nanoreactors to disperse and confine gold nanoparticles (AuNPs), we realize the direct plasmonic photocatalytic nitrogen fixation under ambient conditions. Upon visible irradiation, the hot electrons generated on the AuNPs can be directly injected into the N_2 molecules adsorbed on Au surfaces. Such N_2 molecules can be additionally activated by the strong but evanescently localized surface plasmon resonance field, resulting in a supralinear intensity dependence of the ammonia evolution rate with much higher apparent quantum efficiency and lower apparent activation energy under stronger irradiation. Moreover, the gas-permeable Au@MOF membranes, consisting of numerous interconnected nanoreactors, can ensure the dispersity and stability of AuNPs, further facilitate the mass transfer of N_2 molecules and (hydrated) protons, and boost the plasmonic photocatalytic reactions at the designed gas-membrane-solution interface. As a result, an ammonia evolution rate of 18.9 mmol g_Au~(-1) h~(-1) was achieved under visible light (>400 nm, 100 mW cm~(-2) ) with an apparent quantum efficiency of 1.54% at 520 nm.
机译:光催化氮固定反应可以收获太阳能以将丰富但惰性N_2转化为NH_3。这里,利用金属 - 有机骨架(MOF)膜作为纳米反应器的理想组装分散和限制金纳米粒子(AUNP),我们在环境条件下实现了直接等离子体光催化氮固定。在可见的照射时,可以将在AuNP上产生的热电子直接注入吸附在Au表面上的N_2分子中。这样N_2分子可以通过强但渐逝地局部表面等离子体共振字段被附加地激活,从而在氨释放速率的supralinear强度依存性高得多的表观量子效率和更强的照射下较低的表观活化能。此外,由许多互连的纳米反应器组成的气体渗透Au @ mof膜可以保证AUNP的分散性和稳定性,进一步促进N_2分子的传质和(水合)质子,并在设计的气体下提高血浆光催化反应-membrane解决方案界面。其结果是,的氨释放速率18.9毫摩尔g_Au〜(-1)H〜(-1)在可见光下达到(> 400纳米,100毫瓦厘米〜(-2)),用1.54%的表观量子效率在520 nm。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第15期|5727-5736|共10页
  • 作者单位

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry College of Chemistry and Molecular Engineering Peking University Beijing 100871 China;

    Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering and Advanced Technology Research Institute Beijing Institute of Technology Beijing 100081 China;

    Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China;

    Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry College of Chemistry and Molecular Engineering Peking University Beijing 100871 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China;

    Ministry of Education Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering and Advanced Technology Research Institute Beijing Institute of Technology Beijing 100081 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号