首页> 外文期刊>Journal of the American Chemical Society >Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals
【24h】

Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals

机译:高发光胶体铯卤化锡钙钛矿纳米晶体的理论引导合成

获取原文
获取原文并翻译 | 示例
           

摘要

The synthesis of highly luminescent colloidal CsSnX_3 (X = halogen) perovskite nanocrystals (NCs) remains a long-standing challenge due to the lack of a fundamental understanding of how to rationally suppress the formation of structural defects that significantly influence the radiative carrier recombination processes. Here, we develop a theory-guided, general synthetic concept for highly luminescent CsSnX_3 NCs. Guided by density functional theory calculations and molecular dynamics simulations, we predict that, although there is an opposing trend in the chemical potential-dependent formation energies of various defects, highly luminescent CsSnI_3 NCs with narrow emission could be obtained through decreasing the density of tin vacancies. We then develop a colloidal synthesis strategy that allows for rational fine-tuning of the reactant ratio in a wide range but still leads to the formation of CsSnI_3 NCs. By judiciously adopting a tin-rich reaction condition, we obtain narrow-band-emissive CsSnI_3 NCs with a record emission quantum yield of 18.4%, which is over 50 times larger than those previously reported. Systematic surface-state characterizations reveal that these NCs possess a Cs/I-lean surface and are capped with a low density of organic ligands, making them an excellent candidate for optoelectronic devices without any postsynthesis ligand management. We showcase the generalizability of our concept by further demonstrating the synthesis of highly luminescent CsSnI_(2.5)Br_(0.5)and CsSnI_(2.25)Br_(0.75) NCs. Our findings not only highlight the value of computation in guiding the synthesis of high-quality colloidal perovskite NCs but also could stimulate intense efforts on tin-based perovskite NCs and accelerate their potential applications in a range of high-performance optoelectronic devices.
机译:高发光胶体CSSNX_3(X =卤素)钙钛矿纳米晶体(NCS)的合成仍然是一种长期挑战,因为缺乏对如何合理抑制结构缺陷的形成显着影响辐射载体重组过程的结构缺陷的基本理解。在这里,我们开发了一种理论引导的一般合成概念,用于高发光CSSNX_3 NC。通过密度函数理论计算和分子动力学模拟,我们预测,尽管在各种缺陷的化学电位依赖性形成能量中存在相反的趋势,但通过降低锡空位的密度,可以获得具有狭窄发射的高度发光CSSNI_3NC 。然后,我们开发一种胶体合成策略,可以在宽范围内进行反应物比的合理微调,但仍然导致CSSNI_3 NC的形成。通过使富含酸钙的反应条件,我们获得窄带发射CSSNI_3 NCS,记录排放量子产率为18.4%,其比先前报道的50倍超过50倍。系统的表面态表征揭示这些NCS具有CS / I-倾斜表面,并以低密度的有机配体封盖,使得它们是无需任何后合成配体管理的光电器件的优异候选者。我们通过进一步证明高度发光CSSNI_(2.5)BR_(0.5)和CSSNI_(2.25)BR_(0.75)NCS的合成来展示我们概念的普遍性。我们的发现不仅突出了指导高质量胶体钙钛矿NC的合成的计算价值,而且可以刺激基于锡的Perovskite NCS的强烈努力,并加速其在一系列高性能光电器件中的潜在应用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第14期|5470-5480|共11页
  • 作者单位

    College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China;

    Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia;

    International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 japan Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo 060-0814 Japan;

    International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo 060-0814 Japan;

    Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia;

    College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China;

    College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China;

    International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan;

    School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China;

    Analysis and Testing Center Soochow University Jiangsu 215123 China;

    College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China;

    International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo 060-0814 Japan Department of Physics Chuo University Tokyo 112-8551 Japan;

    Advanced Membranes and PorousMaterials Center (AMPMC) & KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia;

    Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia;

    International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号