首页> 外文期刊>Journal of the American Chemical Society >Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks
【24h】

Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks

机译:2D导电金属有机框架中光诱导电荷运输机制的直接证据

获取原文
获取原文并翻译 | 示例
       

摘要

Conductive metal organic frameworks (MOFs) represent a promising class of porous crystalline materials that have demonstrated potential in photo-electronics and photo-catalytic applications. However, the lack of fundamental understanding on charge transport (CT) mechanism as well as the correlation of CT mechanism with their structure hampered their further development. Herein, we report the direct evidence of CT mechanism in 2D Cu-THQ MOFs and the correlation of temporal and spatial behaviors of charge carriers with their photoconductivity by combining three advanced spectroscopic methods, including time resolved optical and X-ray absorption spectroscopy and terahertz spectroscopy. In addition to Cu-THQ, the CT in Cu/Zn-THQ after incorporating Zn~(2+) guest metal was also examined to uncover the contribution of through space pathway, as the presence of the redox inactive 3d~(10) Zn~(2+) is expected to perturb the long range in-plane CT. We show that the hot carriers in Cu-THQ generated after photoexcitation are highly mobile and undergo fast localization to a lower energy state (cool carriers) with electrons occupying Cu center and holes in ligands. The cool carriers, which have super long lifetime (>17 ns), are responsible for the long-term photoconductivity in Cu-THQ and transport through the O-Cu-O motif with negligible contribution from interlayer ligand π-π stacking, as incorporation of Zn~(2+) in Cu-THQ significantly reduced photoconductivity. These unprecedented results not only demonstrate the capability to experimentally probe CT mechanism but also provide important insight in the rational design of 2D MOFs for photoelectronic and photocatalytic applications.
机译:导电金属有机框架(MOF)代表了一种有望的多孔晶体材料,其在光电和光催化应用中具有证明的潜力。然而,对电荷运输(CT)机制缺乏基本的理解以及CT机制与其结构的相关性阻碍了他们的进一步发展。在此,我们通过组合三种高级光谱方法报告2D CU-THQ MOF中CT机制的直接证据,以及电荷载波的时间和空间行为与其光电导的相关性,包括分辨的光学和X射线吸收光谱和太赫兹光谱。除Cu-Thq外,还检查了Cu / Zn-THQ之后Cu / Zn-Thq,还检查了通过空间途径的贡献,因为氧化还原无活性3D〜(10)Zn 〜(2+)预计会扰乱平面内的长距离CT。我们表明,光通透镜后产生的CU-THQ中的热载波是高度移动的,并且通过占据Cu中心和配体中的孔的电子进行快速定位到较低的能量状态(冷却载体)。具有超长寿命(> 17ns)的冷却载体负责Cu-THQ中的长期光电导性,并通过O-CU-O基序的运输,与中间层配体π-π堆叠的可忽略的贡献为掺入Cu-THQ中的Zn〜(2+)显着降低了光电导性。这些前所未有的结果不仅展示了通过实验探测CT机制的能力,而且还为光电和光催化应用的2D MOF的合理设计提供了重要的洞察。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第50期|21050-21058|共9页
  • 作者单位

    Department of Chemistry Marquette University Milwaukee 53201 United States;

    Department of Chemistry and Yale Energy Science Institute Yale University New Haven Connecticut 06520 United States;

    Department of Chemistry Marquette University Milwaukee 53201 United States;

    Department of Chemistry and Yale Energy Science Institute Yale University New Haven Connecticut 06520 United States;

    Department of Molecular Biophysics and Biochemistry and Yale Microbial Sciences Institute Yale University New Haven Connecticut 06520-8107 Unites States;

    Department of Chemistry University of Nebraska-Lincoln Lincoln Nebraska 68588 United States;

    Department of Chemistry Marquette University Milwaukee 53201 United States;

    X-ray Science Division Argonne National Laboratory Argonne Illinois 60349 United States;

    Department of Chemistry University of Nebraska-Lincoln Lincoln Nebraska 68588 United States;

    X-ray Science Division Argonne National Laboratory Argonne Illinois 60349 United States;

    Department of Chemistry and Yale Energy Science Institute Yale University New Haven Connecticut 06520 United States;

    Department of Chemistry Marquette University Milwaukee 53201 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 23:00:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号