首页> 外文期刊>Journal of the American Chemical Society >Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H_2 to Achieve N≡N Triple-Bond Activation
【24h】

Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H_2 to Achieve N≡N Triple-Bond Activation

机译:电子再分配在氮酶活性位点股骨辅因子在减少消除H_2期间实现N≡N三键活化

获取原文
获取原文并翻译 | 示例
           

摘要

Nitrogen fixation by nitrogenase begins with the accumulation of four reducing equivalents at the active-site FeMo-cofactor (FeMo-co), generating a state (denoted E_4(4H)) with two [Fe-H-Fe] bridging hydrides. Recently, photolytic reductive elimination (re) of the E_4(4H) hydrides showed that enzymatic re of E_4(4H) hydride yields an H_2-bound complex (E_4(H_2,2H)), in a process corresponding to a formal 2-electron reduction of the metal-ion core of FeMo-co. The resulting electron-density redistribution from Fe-H bonds to the metal ions themselves enables N_2 to bind with concomitant H_2 release, a process illuminated here by QM/MM molecular dynamics simulations. What is the nature of this redistribution? Although E_4(H_2,2H) has not been trapped, cryogenic photolysis of E_4(4H) provides a means to address this question. Photolysis of E_4(4H) causes hydride-re with release of H_2, generating doubly reduced FeMo-co (denoted E_4(2H)*), the extreme limit of the electron-density redistribution upon formation of E_4(H_2,2H). Here we examine the doubly reduced FeMo-co core of the E_4(2H)* limiting-state by ~1H, ~(57)Fe, and ~(95)Mo ENDOR to illuminate the partial electron-density redistribution upon E_4(H_2,2H) formation during catalysis, complementing these results with corresponding DFT computations. Inferences from the E_4(2H)* ENDOR results as extended by DFT computations include (ⅰ) the Mo-site participates negligibly, and overall it is unlikely that Mo changes valency throughout the catalytic cycle; and (ⅱ) two distinctive E_4(4H) ~(57)Fe signals are suggested as associated with structurally identified "anchors" of one bridging hydride, two others with identified anchors of the second, with NBO-analysis further identifying one anchor of each hydride as a major recipient of electrons released upon breaking Fe-H bonds.
机译:氮酶的氮固定始于活性部位股骨辅因子(Femo-Co)的四个还原当量的积累,产生具有两个[Fe-H-Fe]桥接氢化物的状态(表示E_4(4H))。最近,E_4(4H)氢化物的光解还原消除(RE)显示E_4(4H)氢化物的酶Re,得到H_2结合的复合物(E_4(H_2,2,2H)),在对应于正式2 - 电子的过程中减少股骨CO的金属离子芯。从Fe-H键合到金属离子本身的所得电子密度再分布使N_2能够与伴随的H_2释放结合,通过QM / MM分子动力学模拟在此照射的过程。这种再分配的性质是什么?虽然e_4(h_2,2h)尚未被捕获,但e_4(4h)的低温光解提供了解决这个问题的手段。 E_4(4H)的光解导致H_2的释放,产生双重减少的股骨CO(表示E_4(2H)*),在形成E_4(H_2,2H)时电子密度再分配的极限限制。在这里,我们检查E_4(2H)*限制 - 通过〜1H,〜(57)Fe,〜(95)Mo Endor的双重减少的股骨CORE,以照亮E_4(H_2,)的部分电子密度再分配2h)在催化期间形成,将这些结果与相应的DFT计算补充。从DFT计算延伸的E_4(2H)*注册结果的推论包括(Ⅰ)MO-MA网站可忽略的参与,并且总的来说,MO不太可能在整个催化循环中改变价值; (Ⅱ)两个独特的E_4(4H)〜(57)FE信号被提出与结构识别的一个桥接氢化物的“锚”相关联,其中另外两个具有第二个具有识别的锚点,NBO分析进一步识别每个锚点氢化物作为在断裂Fe-H键时释放的电子的主要接受者。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第52期|21679-21690|共12页
  • 作者单位

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Department of Chemistry and Biocemistry Utah State University Logan Utah 84322 United States;

    Department of Biochemistry Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 United States;

    Department of Chemistry and Biocemistry Utah State University Logan Utah 84322 United States;

    Pacific Northwest National Laboratory Richland Washington 99352 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号