首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction
【2h】

PNAS Plus: Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction

机译:PNAS Plus:关键计算分析阐明了还原消除机制该机制可激活固氮酶以减少N2

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N2 → 2NH3 reduction involves the reductive elimination (re) of H2 from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H2 for each N2 reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. (i) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[e/H+] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. (ii) These calculations indicate an important role of sulfide hemilability in the overall conversion of E0 to a diazene-level intermediate. (iii) Perhaps most importantly, they explain (iiia) how the enzyme mechanistically couples exothermic H2 formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutral re/oxidative-addition equilibrium, (iiib) while preventing the “futile” generation of two H2 without N2 reduction: hydride re generates an H2 complex, but H2 is only lost when displaced by N2, to form an end-on N2 complex that proceeds to a diazene-level intermediate.
机译:最近的光谱,动力学,光物理和热力学测量结果表明,激活N2→2NH3还原的固氮酶涉及与催化[7Fe–9S–Mo–Mo]结合的两个[Fe–H–Fe]桥接氢化物中的H2的还原消除(再)。 C-均相] FeMo-辅因子(FeMo-co)。这些研究合理化了Lowe-Thorneley动力学方案的建议,即每减少一个N2,就必须在机械上形成一个H2。它们还提供了一个总体框架,用于了解固氮酶固氮的机理。但是,它们直接提出了此处通过计算解决的基本问题。我们在这里报告了广泛的计算研究,探讨了可能的固氮酶中间体的结构和能量学,使用了结构复杂的活性位点的结构模型,同时评估了多种密度泛函理论风味。 (i)这表明,为了防止对累积有4 [e - / H + ]的FeMo-co进行干扰破坏,必须包括:所有残基(和水分子) )通过特定的H键相互作用直接与FeMo-co相互作用;非特异性局部静电相互作用;和空间限制。 (ii)这些计算表明,硫化物的半透性在E0转化为重氮级中间体的总体转化中起着重要作用。 (iii)也许最重要的是,他们解释了(iiia)酶如何将放热的H2形成机理与在接近热中性的再氧化/氧化平衡中的N≡N三键的吸热裂解耦合,(iiib)防止“徒劳”在不还原N2的情况下生成两个H2:氢化物re生成H2络合物,但H2仅在被N2取代后才会丢失,形成一个端基N2络合物,该络合物发展为重氮级中间体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号