首页> 外文期刊>Journal of the American Chemical Society >Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te
【24h】

Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te

机译:CU和TE的双重掺入,N型PBSE在N型PBSE中具有极高的平均功率因数和热电数字

获取原文
获取原文并翻译 | 示例
       

摘要

Thermoelectric materials with high average power factor and thermoelectric figure of merit (ZT) has been a sought-after goal. Here, we report new n-type thermoelectric system Cu_XPbSe_(0.99)Te_(0.01)(x = 0.0025, 0.004, and 0.005) exhibiting record-high average ZT ~ 1.3 over 400-773 K ever reported for n-type polycrystalline materials including the state-of-the-art PbTe. We concurrently alloy Te to the PbSe lattice and introduce excess Cu to its interstitial voids. Their resulting strong attraction facilitates charge transfer from Cu atoms to the crystal matrix significantly. It follows the increased carrier concentration without damaging its mobility and the consequently improved electrical conductivity. This interaction also increases effective mass of electron in the conduction band according to DFT calculations, thereby raising the magnitude of Seebeck coefficient without diminishing electrical conductivity. Resultantly, Cu_(0.005)PbSe_(0.99)Te_(0.01) attains an exceptionally high average power factor of ~27 μW cm-1 K~2 from 400 to 773 K with a maximum of ~30 μW cm~(-1) K~(-2) at 300 K, the highest among all n- and p-type PbSe-based materials. Its ~23 μW cm~(-1) K'2 at 773 K is even higher than ~21 μW cm 1 K 2 of the state-of-the-art n-type PbTe. Interstitial Cu atoms induce the formation of coherent nanostructures. They are highly mobile, displacing Pb atoms from the ideal octahedral center and severely distorting the local microstructure. This significantly depresses lattice thermal conductivity to ~0.2 Wm~(-1) K~(-1) at 773 K below the theoretical lower bound. The multiple effects of the dual incorporation of Cu and Te synergistically boosts a ZT of Cu_(0.005)PbSe_(0.99)Te_(0.01) to ~1.7 at 773 K.
机译:具有高平均功率因数和热电人物的热电材料(ZT)是一个追捧的目标。在这里,我们报告了新的n型热电系统Cu_xpbse_(0.01)TE_(0.01)(x = 0.0025,0004,0.005),表现出历史高平均ZT〜1.3以上的N型多晶材料,包括在内的N型多晶体材料最先进的PBTE。我们同时对PBSE格子合金TE并将过量的Cu引入其间质空隙。它们所产生的强大吸引力使Cu原子从Cu原子转移到晶体矩阵显着。它遵循载体浓度增加而不损坏其迁移率,因此改善了电导率。根据DFT计算,该相互作用还增加了导通带中的有效电子物质,从而升高了塞贝克系数的大小而不减小电导率。结果,CU_(0.005)PBSE_(0.019)TE_(0.01)达到400至773 k的特别高的平均功率因数,最大约为30μW厘米〜(-1)k 〜(-2)以300 k,所有N和P型PBSE材料中最高。其773k的〜23μwcm〜(-1)k'2甚至高于最先进的n型PBTE的〜21μwcm1k2。间质Cu原子诱导相干纳米结构的形成。它们是高度移动的,从理想的八面体中心移位PB原子,并严重扭曲局部微观结构。在低于理论下限的773 k下,这显着抑制了晶格导热率至〜0.2wm〜(-1)k〜(-1)。 Cu和Te的双重掺入的多种效果协同促使Cu_(0.005)Pbse_(0.01)TE_(0.01)的Zt在773k处〜1.7。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第35期|15172-15186|共15页
  • 作者单位

    School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seou108826 Republic of Korea;

    Institute of Physics (IA) RWTH Aachen University 52056 Aachen Germany;

    Chemical Data-Driven Research Center Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea;

    School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seou108826 Republic of Korea State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China;

    School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seou108826 Republic of Korea;

    Institute of Physics (IA) RWTH Aachen University 52056 Aachen Germany;

    Chemical Data-Driven Research Center Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea;

    National Center for Inter-University Research Facilities Seoul National University Seou108826 Republic of Korea;

    Institute of Physics (IA) RWTH Aachen University 52056 Aachen Germany JARA-FIT Institute Green-IT RWTH Aachen University and Forschungszentrum Julich 52056 Aachen Germany;

    State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China;

    Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:16:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号