首页> 外文期刊>Journal of the American Chemical Society >Proton-Coupled Electron Transfer from Tyrosine in the Interior of a de novo Protein: Mechanisms and Primary Proton Acceptor
【24h】

Proton-Coupled Electron Transfer from Tyrosine in the Interior of a de novo Protein: Mechanisms and Primary Proton Acceptor

机译:从DE Novo蛋白的内部酪氨酸的质子偶联电子转移:机制和初级质子受体

获取原文
获取原文并翻译 | 示例
           

摘要

Proton-coupled electron transfer (PCET) from tyrosine produces a neutral tyrosyl radical (Y~·) that is vital to many catalytic redox reactions. To better understand how the protein environment influences the PCET properties of tyrosine, we have studied the radical formation behavior of Y_(32) in the a_3Y model protein. The previously solved a_3Y solution NMR structure shows that Y_(32) is sequestered ~7.7 ± 0.3 A below the protein surface without any primary proton acceptors nearby. Here we present transient absorption kinetic data and molecular dynamics (MD) simulations to resolve the PCET mechanism associated with Yv oxidation. Y_(32)~· was generated in a bimolecular reaction with [Ru(bpy)_3]~(3+) formed by flash photolysis. At pH > 8, the rate constant of Y_(32)~· formation (k_(PCET)) increases by one order of magnitude per pH unit, corresponding to a proton-first mechanism via tyrosinate (PTET). At lower pH < 7.5, the pH dependence is weak and shows a previously measured KIE ≈ 2.5, which best fits a concerted mechanism. k_(PCET) is independent of phosphate buffer concentration at pH 6.5. This provides clear evidence that phosphate buffer is not the primary proton acceptor. MD simulations show that one to two water molecules can enter the hydrophobic cavity of α_3Y and hydrogen bond to Y_(32), as well as the possibility of hydrogen-bonding interactions between Y_(32) and E_(13), through structural fluctuations that reorient surrounding side chains. Our results illustrate how protein conformational motions can influence the redox reactivity of a tyrosine residue and how PCET mechanisms can be tuned by changing the pH even when the PCET occurs within the interior of a protein.
机译:来自酪氨酸的质子偶联电子转移(PCET)产生中性酪氨酸(Y〜·),对许多催化氧化还原反应至关重要。为了更好地了解蛋白质环境如何影响酪氨酸的PCET性质,我们已经研究了A_3Y模型蛋白中Y_(32)的自由基形成行为。先前溶解的A_3Y溶液NMR结构表明Y_(32)被隔离〜7.7±0.3A在蛋白质表面下方而没有任何主要的质子受体。在这里,我们提出了瞬态吸收动力学数据和分子动力学(MD)模拟,以解决与YV氧化相关的PCET机构。 y_(32)〜·在与闪光光解形成的[Ru(BPY)_3]〜(3+)的双分子反应中产生。在pH> 8时,Y_(32)〜·形成(K_(PCET))的速率常数每pH单位的一个幅度增加,对应于通过酪氨酸(PTET)的质子第一机制。在较低的pH <7.5时,pH依赖性是弱的,并且显示了先前测得的kie≈.25,其最适合齐全的机制。 K_(PCET)与pH6.5的磷酸盐缓冲浓度无关。这提供了明确的证据,即磷酸盐缓冲液不是主要质子受体。 MD模拟表明,一到两个水分子可以通过结构波动进入Y_(32)的α_3Y和氢键的疏水腔,以及氢键相互作用的可能性波动重新定位周围的侧链。我们的结果说明了蛋白质构象动作如何影响酪氨酸残留物的氧化还原反应性,并且即使在蛋白质的内部发生PCET,即使在蛋白质内部发生pH也可以通过改变pH来调节PCET机构。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第26期|11550-11559|共10页
  • 作者单位

    Department of Chemistry Angstroem Laboratory Uppsala University Uppsala 75120 Sweden;

    Department of Molecular Biophysics and Biochemistry Yale University New Haven Connecticut 06520 United States;

    Department of Chemistry Angstroem Laboratory Uppsala University Uppsala 75120 Sweden;

    Departments of Biochemistry and Biophysics University of Pennsylvania Philadelphia Pennsylvania 19104-6059 United States;

    Department of Chemistry Yale University New Haven Connecticut 06520 United States;

    Department of Chemistry Angstroem Laboratory Uppsala University Uppsala 75120 Sweden;

    Departments of Biochemistry and Biophysics University of Pennsylvania Philadelphia Pennsylvania 19104-6059 United States Department of Biochemistry and Biophysics Texas A&M University College Station Texas 77843-2128 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号