首页> 外文期刊>Journal of the American Chemical Society >Cooperative Effects between Hydrophilic Pores and Solvents: Catalytic Consequences of Hydrogen Bonding on Alkene Epoxidation in Zeolites
【24h】

Cooperative Effects between Hydrophilic Pores and Solvents: Catalytic Consequences of Hydrogen Bonding on Alkene Epoxidation in Zeolites

机译:亲水性孔隙与溶剂之间的合作效应:氢键合在沸石中烯烃环氧化的催化后果

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrophobic voids within titanium silicates have long been considered necessary to achieve high rates and selectivities for alkene epoxidations with H2O2. The catalytic consequences of silanol groups and their stabilization of hydrogen-bonded networks of water (H2O), however, have not been demonstrated in ways that lead to a clear understanding of their importance. We compare turnover rates for 1-octene epoxidation and H2O2 decomposition over a series of Ti-substituted zeolite *BEA (Ti-BEA) that encompasses a wide range of densities of silanol nests ((SiOH)(4)). The most hydrophilic Ti-BEA gives epoxidation turnover rates that are 100 times larger than those in defect-free Ti-BEA, yet rates of H2O2 decomposition are similar for all (SiOH)(4) densities. These differences cause the most hydrophilic Ti-BEA to also give the highest selectivities, which defies conventional wisdom. Spectroscopic, thermodynamic, and kinetic evidence indicate that these catalytic differences are not due to changes in the electronic affinity of the active site, the electronic structure of Ti-OOH intermediates, or the mechanism for epoxidation. Comparisons of apparent activation enthalpies and entropies show that differences in epoxidation rates and selectivities reflect favorable entropy gains produced when epoxidation transition states disrupt hydrogen-bonded H2O clusters anchored to (SiOH)(4) near active sites. Transition states for H2O2 decomposition hydrogen bond with H2O in ways similar to Ti-OOH reactive species, such that decomposition becomes insensitive to the presence of (SiOH)(4). Collectively, these findings clarify how molecular interactions between reactive species, hydrogen-bonded solvent networks, and polar surfaces can influence rates and selectivities for epoxidation (and other reactions) in zeolite catalysts.
机译:钛硅酸盐内的疏水性空隙长期以来,需要达到H 2 O 2的烯烃环氧化的高速率和选择性。然而,硅烷醇基团的催化后果及其氢键网络的水(H2O)的稳定性尚未以明确的了解其重要性的方式证明。通过在一系列Ti取代的沸石* BEA(Ti-BEA)上比较1-辛烯环氧化和H2O2分解的周转速率,包括硅烷醇巢((SiOH)(4))的各种密度。最亲水的Ti-BEA具有比无缺陷Ti-BEA更大的环氧化周转率,但H2O2分解的率类似于所有(SiOH)(4)密度。这些差异导致最亲水的TI-BEA也给出了最高的选择性,这违背了传统智慧。光谱,热力学和动力学证据表明,这些催化差异不是由于活性位点的电子亲和力的变化,Ti-oOH中间体的电子结构或环氧化机制。表观激活焓和熵的比较表明,环氧化速率和选择性的差异反映了环氧化转变状态破坏锚固到(SiOH)(4)靠近活性位点的氢键合的H2O簇产生的有利熵增益。 H 2 O 2分解氢键与H2O的转变状态以类似于Ti-OOH反应物质的方式,使得分解对(SiOH)(4)的存在不敏感。总的来说,这些发现阐明了反应性物种,氢键溶剂网络和极性表面之间的分子相互作用如何影响沸石催化剂中环氧化(和其他反应)的速率和选择性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第18期|7302-7319|共18页
  • 作者单位

    Univ Illinois Dept Chem & Biomol Engn Urbana IL 61801 USA;

    Univ Illinois Dept Chem & Biomol Engn Urbana IL 61801 USA;

    Univ Illinois Dept Chem & Biomol Engn Urbana IL 61801 USA;

    Univ Illinois Dept Chem & Biomol Engn Urbana IL 61801 USA;

    Purdue Univ Charles D Davidson Sch Chem Engn W Lafayette IN 47907 USA;

    Purdue Univ Charles D Davidson Sch Chem Engn W Lafayette IN 47907 USA;

    Purdue Univ Charles D Davidson Sch Chem Engn W Lafayette IN 47907 USA;

    Purdue Univ Charles D Davidson Sch Chem Engn W Lafayette IN 47907 USA;

    Univ Illinois Dept Chem & Biomol Engn Urbana IL 61801 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号