首页> 外文期刊>Journal of the American Chemical Society >Quantifying Error Correction through a Rule-Based Model of Strand Escape from an [n]-Rung Ladder
【24h】

Quantifying Error Correction through a Rule-Based Model of Strand Escape from an [n]-Rung Ladder

机译:通过基于规则的从[n]-梯形图逃逸的模型对纠错进行量化

获取原文
获取原文并翻译 | 示例
       

摘要

The rational design of 3D structures (MOFs, COFs, etc.) is presently limited by our understanding of how the molecular constituents assemble. The common approach of using reversible interactions (covalent or noncovalent) becomes challenging, especially when the target is made from multivalent building blocks and/or under conditions of slow exchange, as kinetic traps and nonequilibrium product distributions are possible. Modeling the time course of the assembly process is difficult because the reaction networks include many possible pathways and intermediates. Here we show that rule-based kinetic simulations efficiently model dynamic reactions involving multivalent building blocks. We studied "strand escape from an [n]-rung ladder" as an example of a dynamic process characterized by a complex reaction network. The strand escape problem is important in that it predicts the time a dynamic system needs to backtrack from errors involving [n]-misconnections. We quantify the time needed for error correction as a function of the dissociation rate coefficient, strand valency, and seed species. We discuss the simulation results in relation to a simple probabilistic framework that captures the power law dependence on the strand's valency, and the inverse relationship to the rung-opening rate coefficient. The model also tests the synthetic utility of a one-rung (i.e., hairpin) seed species, which, at intermediate times, bifurcates to a long-lived, fully formed [n]-rung ladder and a pair of separated strands. Rule-based models thus give guidance to the planning of a dynamic covalent synthesis by predicting time to maximum yield of persistent intermediates for a particular set of rate coefficients and valency.
机译:3D结构(MOF,COF等)的合理设计目前受到我们对分子成分组装方式的理解的限制。使用可逆相互作用(共价或非共价)的常见方法变得具有挑战性,特别是当目标是由多价结构单元和/或在缓慢交换的条件下制备时,因为可能出现动力学陷阱和非平衡产物分布。由于反应网络包括许多可能的途径和中间体,因此很难对组装过程的时间过程进行建模。在这里,我们显示了基于规则的动力学模拟可以有效地对涉及多价构件的动力学反应进行建模。我们研究了“从[n]梯形梯中逃逸”,以具有复杂反应网络为特征的动态过程为例。链逃逸问题很重要,因为它可以预测动态系统需要从涉及[n]个错误连接的错误中回溯的时间。我们根据解离速率系数,链价和种子种类来量化纠错所需的时间。我们讨论了有关一个简单概率框架的仿真结果,该框架捕获了取决于股线价数的幂律,并与梯级张开速率系数成反比。该模型还测试了单梯级(即发夹)种子物种的合成效用,该种子物种在中间时间分叉成长寿命的,完全形成的[n]梯级梯子和一对分离的链。因此,基于规则的模型可以通过预测特定速率系数和化合价组持久性中间体的最大产量所需的时间,为动态共价合成的规划提供指导。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第1期|162-168|共7页
  • 作者单位

    Department of Chemistry University of Illinois at Urbana—Champaign Urbana Illinois 61801 United States;

    Department of Chemistry University of Illinois at Urbana—Champaign Urbana Illinois 61801 United States Beckman Institute for Advanced Science and Technology University of Illinois at Urbana—Champaign Urbana Illinois 61801 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:17:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号