首页> 外文期刊>Journal of the American Chemical Society >Understanding the Mechanism of Electronic Defect Suppression Enabled by Nonidealities in Atomic Layer Deposition
【24h】

Understanding the Mechanism of Electronic Defect Suppression Enabled by Nonidealities in Atomic Layer Deposition

机译:了解原子层沉积中非理想性实现的电子缺陷抑制机制

获取原文
获取原文并翻译 | 示例
       

摘要

Silicon germanium (SiGe) is a multifunctional material considered for quantum computing, neuromorphic devices, and CMOS transistors. However, implementation of SiGe in nanoscale electronic devices necessitates suppression of surface states dominating the electronic properties. The absence of a stable and passive surface oxide for SiGe results in the formation of charge traps at the SiGe—oxide interface induced by GeO_x. In an ideal ALD process in which oxide is grown layer by layer, the GeOx formation should be prevented with selective surface oxidation (i.e., formation of an SiO_x interface) by controlling the oxidant dose in the first few ALD cycles of the oxide deposition on SiGe. However, in a real ALD process, the interface evolves during the entire ALD oxide deposition due to diffusion of reactant species through the gate oxide. In this work, this diffusion process in nonideal ALD is investigated and exploited: the diffusion through the oxide during ALD is utilized to passivate the interfacial defects by employing ozone as a secondary oxidant. Periodic ozone exposure during gate oxide ALD on SiGe is shown to reduce the integrated trap density (D_(it)) across the band gap by nearly 1 order of magnitude in Al_2O_3 (<6 × 10~(10) cm~(-2)) and in HfO_2 (<3.9 × 10~(11) cm~(-2)) by forming a SiO_x-rich interface on SiGe. Depletion of Ge from the interfacial layer (IL) by enhancement of volatile GeO_x formation and consequent desorption from the SiGe with ozone insertion during the ALD growth process is confirmed by electron energy loss spectroscopy (STEM-EELS) and hypothesized to be the mechanism for reduction of the interfacial defects. In this work, the nanoscale mechanism for defect suppression at the SiGe—oxide interface is demonstrated, which is engineering of diffusion species in the ALD process due to facile diffusion of reactant species in nonideal ALD.
机译:硅锗(SiGe)是一种用于量子计算,神经形态器件和CMOS晶体管的多功能材料。然而,在纳米级电子器件中实施SiGe必需抑制主导电子性能的表面态。 SiGe没有稳定且无源的表面氧化物会导致在GeGe_x诱导的SiGe-氧化物界面处形成电荷陷阱。在理想的ALD工艺中,逐层生长氧化物,应通过控制在SiGe上沉积的氧化物的前几个ALD循环中的氧化剂剂量,通过选择性表面氧化(即SiO_x界面的形成)来防止GeOx的形成。但是,在实际的ALD工艺中,由于反应物种类通过栅氧化物的扩散,界面会在整个ALD氧化物沉积过程中演化。在这项工作中,研究和开发了非理想ALD中的扩散过程:利用臭氧作为二次氧化剂,利用ALD期间通过氧化物的扩散来钝化界面缺陷。研究表明,在SiGe上进行栅氧化ALD期间定期进行臭氧暴露可使Al_2O_3(<6×10〜(10)cm〜(-2)中整个带隙的集成陷阱密度(D_(it))降低近1个数量级。 )和在HfO_2(<3.9×10〜(11)cm〜(-2))中通过在SiGe上形成富含SiO_x的界面来实现。电子能量损失谱(STEM-EELS)证实了在ALD生长过程中由于挥发性GeO_x形成的增强而导致界面层(IL)中的Ge耗尽以及随之而来的臭氧插入导致SiGe的解吸,并被认为是还原的机理界面缺陷。在这项工作中,证明了在SiGe-氧化物界面处抑制缺陷的纳米级机理,这是由于反应物在非理想ALD中的容易扩散而导致的ALD过程中扩散物种的工程化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第1期|134-145|共12页
  • 作者单位

    Materials Science and Engineering University of California San Diego La Jolla California 92093 United States;

    Advanced Light Source (ALS) E. O. Lawrence Berkeley Laboratory Berkeley California United States;

    Materials Science and Engineering Stanford University Stanford California 94305 United States;

    Irvine Materials Research Institute University of California Irvine Irvine California United States;

    California Institute for Telecommunications and Information Technology University of California San Diego La Jolla California 92093 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:17:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号