首页> 外文期刊>Journal of the American Chemical Society >Spatiotemporal Quantification of Lithium both in Electrode and in Electrolyte with Atomic Precision via Operando Neutron Absorption
【24h】

Spatiotemporal Quantification of Lithium both in Electrode and in Electrolyte with Atomic Precision via Operando Neutron Absorption

机译:通过操作中子吸收以原子精度对锂和锂进行时空定量分析

获取原文
获取原文并翻译 | 示例
       

摘要

The commercial uptake of lithium-sulfur (Li-S) batteries is undermined by their rapid performance decay and short cycle life. These problems originate from the dissolution of lithium polysulfide in liquid electrolytes, causing charge and active material to shuttle between electrodes. The dynamics of intractable polysulfide migration at different length scales often tend to escape the probing ability of many analytical techniques. Spatial and temporal visualization of Li in Li-S electrodes and direct mechanistic understanding of how polysulfides are regulated across Li-S batteries starting from current collector and active layer coating to electrode-electrolyte interface are still lacking. To address this we employ neutron depth profiling across Li-S electrodes using the naturally occurring isotope, Li-6, which yields direct spatial information on Li-S electrochemistry. Using three types of Li-S electrodes, namely, carbon-sulfur, carbon-sulfur with 10% lithium titanium oxide (LTO), and carbon-sulfur with LTO membrane, we provide direct evidence for the migration, adsorption, and confinement of polysulfides in Li-S cells at work. Our findings further provide insights into the dynamics of polysulfide dissolution and re-utilization in relation to Li-S battery capacity and longevity to aid rational electrode designs toward high-energy, safe, and low-cost batteries.
机译:锂硫(Li-S)电池的商业吸收因其快速的性能衰减和短的循环寿命而受到损害。这些问题源于多硫化锂在液体电解质中的溶解,导致电荷和活性物质在电极之间穿梭。不同长度尺度上难处理的多硫化物迁移的动力学往往倾向于逃避许多分析技术的探测能力。仍然缺乏对锂硫电极中锂的时空可视化以及从集电器和活性层涂层到电极-电解质界面的整个锂硫电池中如何调节多硫化物的直接机械理解。为了解决这个问题,我们使用自然存在的同位素Li-6在Li-S电极上进行中子深度分析,从而产生有关Li-S电化学的直接空间信息。使用三种类型的Li-S电极,即碳硫,含10%氧化钛锂(LTO)的碳硫和带LTO膜的碳硫,我们为多硫化物的迁移,吸附和限制提供了直接的证据在工作的锂硫电池中。我们的发现进一步为与Li-S电池容量和寿命有关的多硫化物溶解和再利用的动力学提供了见识,以帮助合理的电极设计走向高能量,安全和低成本的电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号