首页> 外文期刊>Journal of the American Chemical Society >The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony
【24h】

The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony

机译:高迁移率二维半导体的最佳电子结构:二维锑中异常高的空穴迁移率

获取原文
获取原文并翻译 | 示例
       

摘要

Two-dimensional (2D) semiconductors have very attractive properties for many applications such as photoelectrochemistry. However, a significant challenge that limits their further developments is the relatively low electron/hole mobility at room temperature. Here using the Boltzmann transport theory with the scattering rates calculated from first-principles that allow us to accurately determine the mobility, we discover an exceptionally high intrinsic mobility of holes in monolayer antimony (Sb), which is similar to 1330 cm(2) V-1 s(-1) at room temperature, much higher than the common 2D semiconductors including MoS2, InSe, and black phosphorus in monolayer form, and is the highest among 2D materials with a band gap of >1 eV reported so far. Its high mobility and the moderate band gap make it very promising for many applications. By comparing the 2D Sb with other 2D materials in the same group, we find that the high mobility is closely related with its electronic structure, which has a sharp and deep valence band valley, and, importantly, located at the Gamma point. This electronic structure not only gives rise to a high velocity for charge carriers but also leads to a small density of states for accepting the scattered carriers, particularly by eliminating the valley-valley and peak-valley scatterings that are found to be significant for other materials. This type of electronic structure thus can be used as a target feature to design/discover high-mobility 2D semiconductors. Our work provides a promising material to overcome the mobility issue and also suggests a simple and general principle for high-mobility semiconductor design/discovery.
机译:二维(2D)半导体对于许多应用(例如光电化学)具有非常吸引人的特性。然而,限制其进一步发展的重大挑战是室温下相对较低的电子/空穴迁移率。在这里,使用玻尔兹曼输运理论,并根据第一性原理计算出的散射速率,使我们能够准确确定迁移率,我们发现了单层锑(Sb)中空穴的异常高的固有迁移率,类似于1330 cm(2)V在室温下为-1 s(-1),远高于包括单层形式的MoS2,InSe和黑磷的常见2D半导体,并且是迄今为止报道的带隙> 1 eV的2D材料中最高的。它的高迁移率和适度的带隙使它在许多应用中非常有前途。通过将2D Sb与同一组中的其他2D材料进行比较,我们发现高迁移率与其电子结构密切相关,该电子结构具有陡峭而深的价带谷,并且重要地位于Gamma点。这种电子结构不仅提高了电荷载流子的速度,而且还降低了接受散射载流子的状态的密度,特别是通过消除了对其他材料来说很重要的谷谷和峰谷散射。因此,这种类型的电子结构可以用作设计/发现高迁移率2D半导体的目标特征。我们的工作为克服迁移率问题提供了有希望的材料,并为高迁移率半导体设计/发现提出了简单而通用的原理。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第41期|16296-16302|共7页
  • 作者单位

    Univ Texas Austin Texas Mat Inst Austin TX 78712 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:58:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号