首页> 外文期刊>Journal of the American Chemical Society >Multistructural Anharmonicity Controls the Radical Generation Process in Biofuel Combustion
【24h】

Multistructural Anharmonicity Controls the Radical Generation Process in Biofuel Combustion

机译:多结构非谐性控制生物燃料燃烧中的自由基生成过程

获取原文
获取原文并翻译 | 示例
       

摘要

The OH radical plays an important role in combustion, and isopentanol (3-methylbutan-1-ol) is a promising sustainable fuel additive and second-generation biofuel. The abstractions of H atoms from fuel molecules are key initiation steps for chain branching in combustion chemistry. In comparison with the more frequently studied ethanol, isopentanol has a longer carbon chain that allows a greater number of products, and experimental work is unavailable for the branching fractions to the various products. However, the site-dependent kinetics of isopentanol with OH radicals are usually experimentally unavailable. Alcohol oxidation by OH is also important in the atmosphere, and in the present study we calculate the rate constants and branching fractions of the hydrogen abstraction reaction of isopentanol by OH radical in a broad temperature range of 298-2400 K, covering temperatures important for atmospheric chemistry and those important for combustion. The calculations are done by multipath variational transition state theory (MP-VTST). With a combination of electronic structure calculations, we determine previously missing thermochemical data. With MP-VTST, a multidimensional tunneling approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we carried out more realistic rate constant calculations than can be computed by conventional single-structure harmonic transition state theory or by the empirical relations that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated, and we show that recrossing, tunneling, and multiple structures are all essential for accurate work. We conclude that the multiple structure anharmonicity is the most important correction to conventional transition state theory for this reaction, although recrossing effects and tunneling are by no means insignificant and the tunneling depends significantly on the path. The thermodynamic and kinetics data determined in this work are indispensable for the gas-phase degradation of alcohols in the atmosphere and for the detailed understanding and prediction of ignition mechanisms of biofuels in combustion.
机译:OH自由基在燃烧中起着重要作用,而异戊醇(3-甲基丁-1-醇)是有前途的可持续燃料添加剂和第二代生物燃料。从燃料分子中提取H原子是燃烧化学中链支化的关键引发步骤。与更频繁研究的乙醇相比,异戊醇具有更长的碳链,可产生更多的产物,并且尚无法进行将分支馏分连接至各种产物的实验工作。但是,异戊醇与OH自由基的位置依赖性动力学通常在实验上不可用。 OH引起的醇氧化在大气中也很重要,在本研究中,我们计算了298-2400 K的宽温度范围内OH自由基引起的异戊醇通过OH夺氢反应的速率常数和支化分数化学和对燃烧很重要的化学。该计算是通过多径变迁过渡状态理论(MP-VTST)完成的。结合电子结构计算,我们可以确定以前缺少的热化学数据。使用MP-VTST,多维隧道近似,多结构非谐和扭转势不谐和,我们进行了比常规单结构谐波过渡态理论或当前使用的经验关系式更实际的速率常数计算在大气和燃烧模型中。阐明了决定速率的各种因素的作用,并且我们证明了穿越,隧穿和多种结构对于精确工作都是必不可少的。我们得出的结论是,对于这种反应,多重结构不谐和是对传统过渡态理论的最重要修正,尽管重交效应和隧穿绝非微不足道,并且隧穿很大程度上取决于路径。在这项工作中确定的热力学和动力学数据对于大气中醇类的气相降解以及对燃烧中生物燃料的着火机理的详细理解和预测是必不可少的。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第46期|18531-18543|共13页
  • 作者单位

    Henan Univ Sci & Technol Energy & Power Engn Inst Luoyang 471003 Henan Peoples R China|Univ Minnesota Dept Chem Chem Theory Ctr 207 Pleasant St SE Minneapolis MN 55455 USA|Univ Minnesota Minnesota Supercomp Inst Minneapolis MN 55455 USA;

    Univ Sci & Technol China Natl Synchrotron Radiat Lab Hefei 230029 Anhui Peoples R China;

    Univ Minnesota Dept Chem Chem Theory Ctr 207 Pleasant St SE Minneapolis MN 55455 USA|Univ Minnesota Minnesota Supercomp Inst Minneapolis MN 55455 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:58:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号