首页> 外文期刊>Journal of the American Chemical Society >Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li~+ Electrolyte
【24h】

Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li~+ Electrolyte

机译:固定在共价有机骨架中作为固态Li〜+电解质的玻璃状聚环氧乙烷的积累

获取原文
获取原文并翻译 | 示例
       

摘要

Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 degrees C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 X 10(-3) S cm(-1) was achieved at 200 degrees C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 degrees C.
机译:在固态中显示快速离子传导/传输路径的分子结构的设计一直是一项重大挑战。有机聚合物中的非晶态或玻璃态相具有动态和无规结构,因此对于快速的离子传导性非常有效。但是,这些聚合物的主要问题一直是难以阐明离子传导的机理,因此难于设计。此外,离子导电聚合物的无定形或玻璃态通常面临结构/机械稳定性的问题。共价有机骨架(COF)是一类新兴的具有周期性结构和可调功能的结晶有机聚合物,具有作为独特的离子导体/转运体的潜力。在这里,我们描述了使用COF作为全固态Li +电导率的介质。应用了一种自下而上的自组装方法,以共价网状化柔性,大体积和玻璃状聚环氧乙烷(PEO)部分,该部分可以通过在刚性二维COF结构中的分段运动来溶解Li +,从而实现快速运输。随温度变化的粉末X射线衍射和热重分析表明,即使在300摄氏度以上,其周期性结构也完好无损,差示扫描量热法和固态NMR显示,聚结的PEO链具有很高的动态性,并呈玻璃态。发现Li +电导率取决于结晶态PEO链的动力学和长度,在LiTFSI掺杂后,在200摄氏度下获得了1.33 X 10(-3)S cm(-1)的固态Li +电导率。由于结构的坚固性,在指定温度下的高电导率可长时间保持不变。此外,我们展示了COF电解质在100摄氏度下在全固态锂电池中的首次应用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第3期|1227-1234|共8页
  • 作者单位

    Kyoto Univ, Inst Adv Study, Vidyasirimedhi Inst Sci & Technol, Inst Integrated Cell Mat Sci,Res Ctr, Kyoto 6068501, Japan;

    RIKEN CLST JEOL Collaborat Ctr, Yokohama, Kanagawa 2300045, Japan;

    RIKEN CLST JEOL Collaborat Ctr, Yokohama, Kanagawa 2300045, Japan|JEOL RESONANCE Inc, 3-1-2 Musashino, Akishima, Tokyo 1968558, Japan;

    AIST Kyoto Univ, Chem Energy Mat Open Innovat Lab ChEM OIL, Natl Inst Adv Ind Sci & Technol AIST, Sakyo Ku, Kyoto 6068501, Japan;

    Kyoto Univ, Inst Adv Study, Vidyasirimedhi Inst Sci & Technol, Inst Integrated Cell Mat Sci,Res Ctr, Kyoto 6068501, Japan;

    Kyoto Univ, Inst Adv Study, Vidyasirimedhi Inst Sci & Technol, Inst Integrated Cell Mat Sci,Res Ctr, Kyoto 6068501, Japan|AIST Kyoto Univ, Chem Energy Mat Open Innovat Lab ChEM OIL, Natl Inst Adv Ind Sci & Technol AIST, Sakyo Ku, Kyoto 6068501, Japan|Kyoto Univ, Grad Sch Engn, Dept Synthet Chem & Biol Chem, Nishikyo Ku, Kyoto 6158510, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:12:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号