首页> 外文期刊>Journal of the American Chemical Society >Polymerization of α-Olefins and Butadiene and Catalytic Cyclotrimerization of 1-Alkynes by a New Class of Group IV Catalysts. Control of Molecular Weight and Polymer Microstructure via Ligand Tuning in Sterically Hindered Chelating Phenoxide Titanium an
【24h】

Polymerization of α-Olefins and Butadiene and Catalytic Cyclotrimerization of 1-Alkynes by a New Class of Group IV Catalysts. Control of Molecular Weight and Polymer Microstructure via Ligand Tuning in Sterically Hindered Chelating Phenoxide Titanium an

机译:新型IV类催化剂对α-烯烃和丁二烯的聚合以及1-炔烃的催化环三聚。通过配位调节控制受阻螯合酚盐钛和钛的分子量和聚合物微结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A new class of homogeneous catalysts for olefin oligo-polymerization is reported. These titanium or zirconium sterically hindered chelating alkoxide complexes were prepared by reaction of M(CH_2Ph)_4 (M = Ti, Zr) or Zr(CH_2Ph)_2Cl_2(OEt_2)_2 with the appropriate biphenol or binaphthol, or by reaction of TiCl_4 with the diol. Using these methodologies, a range of binaphthoxide and biphenoxide catalysts with varying steric hindrance have been prepared: {1,1′-(2,2′,3,3′-OC_(10)H_5SiR_3)}_2ZrCl_2 {R_3 = Me_3 (1); R_3 = MePh_2 (2); R_3 = Ph_3 (3)}, {1,1′-(2,2′,3,3′-OC_(10)H_5SiMe_3)}_2Ti(CH_2Ph)_2 (4), {1,1′-(2,2′,3,3′-OC_(10)H_5SiMePh_2)}_2Zr(CH_2Ph)_2 (5), (1,1′-(2,2′,3,3′-OC_(10)H_5-SiPh_3)}_2M(CH_2Ph)_2 (M = Ti (7), M = Zr (8)}, 2,2′-S(4-Me,6-~tBuC_6H_2O)_2MX_2 {MX_2 = TiCl_2 (10); MX_2 = ZrCl_2 (11); MX_2 = Ti(CH_2Ph)_2 (12)}, {2,2′-S(4-Me,6-~tBuC_6H_2O)_2}_2Ti (13), 2,2′-(4,6-~tBu_2C_6H_2O)_2MX_2 {MX_2 = Ti(CH_2-Ph)_2 (14); MX_2 = ZrCl_2(THF)_2 (15)}, {2,2′-(4-OMe,6-~tBuC_6H_2O)_2}_2Ti (16), 2,2′-(4-OMe,6-~tBuC_6H_2O)_2Ti(CH_2Ph)_2 (17)}, 2,2′-CH_2(4-Et,6-~tBuC_6H_2O)_2TiX_2 {X = CH_2Ph (18), X = Cl (19), and {2,2′-CH_2(4-Et,6-~tBuC_6H_2O)_2}_2Ti (20). This class of L_2MCl_2 systems can be regarded as being analogous to the well-documented range of Group IV metallocenes. Alkylation of (O—O)ZrCl_2 ((O-O = chelating phenoxide) allowed access to other alkyl species. Therefore, reaction of 3 with MeLi or Me_3SiCH_2Li afforded {1,1′-{2,2′,3,3′-OC_(10)H_5SiPh_3}_2ZrX_2 {X = Me (6); X = CH_2SiMe_3 (9)}, respectively. The X-ray crystal structure of 17 is reported. At 213 K, 17·1/2OEt_2 has space group P1 and unit cell dimensions a = 8.737(9) A, b= 11.840(10) A, c = 17.135(17) A, α = 98.28(7)°, β = 90.53(8)°, γ = 101.38(7)°, μ(Mo Kα) = 2.88 cm~(-1). Attempts to prepare analogous sterically hindered binaphthiolates were thwarted by the absence of known sterically hindered chelating binaphthiols. Synthetic routes to such ligands were attempted albeit without success. The chelating phenoxide and binaphthoxide titanium and zirconium species, in the presence of an aluminum cocatalyst are active for the oligo-polymerization of α-olefins. For the polymerization of ethylene, rates of up to 4740 kg of PE/mol of catalyst·h (100 kg/g of Ti·h) were obtained. They are active for the polymerization of butadiene and the catalytic cyclotrimerization of terminal acetylenes to 1,2,4- and 1,3,5-trisubstituted benzenes. This ratio of benzenes is dependent on the steric bulk of the ancillary binaphthol ligands. Steric modifications also have a clear influence on the degree of 1-hexene polymerization as well as the tacticity of poly-(1-hexene). In particular, the chelating alkoxide ligand framework can induce stereoregularity. For 1 and 2, with methylaluminoxane as cocatalyst, regioregular and stereospecific polymerization of 1-hexene is observed to give high molecular weight isotactic polyhexene. Related ligand-dependent differences in polymer microstructure are observed in the polymerization of butadiene. Cationic complexes have been synthesized. [(C_(10)H_5SiPh_3O)_2Zr(CH_2-Ph)]BPh_4 (21), and zwitterionic (C_(10)H_5SiPh_3O)_2Zr(CH_2Ph)(η~6-PhCH_2)B(C_6F_5)_3 (22) were made by treatment of 8 with [PhNMe_2H]BPh_4 and B(C_6F_5)_3, respectively. They are active for the polymerization of ethylene.
机译:报道了用于烯烃低聚的一类新的均相催化剂。这些钛或锆位阻螯合的醇盐配合物是通过M(CH_2Ph)_4(M = Ti,Zr)或Zr(CH_2Ph)_2Cl_2(OEt_2)_2与适当的双酚或联萘酚反应制得的,或通过TiCl_4与二醇。使用这些方法,已制备了一系列具有不同空间位阻的双萘酚和联苯醚氧化物催化剂:{1,1'-(2,2',3,3'-OC_(10)H_5SiR_3)} _ 2ZrCl_2 {R_3 = Me_3(1 ); R_3 = MePh_2(2); R_3 = Ph_3(3)},{1,1'-(2,2',3,3'-OC_(10)H_5SiMe_3)} _ 2Ti(CH_2Ph)_2(4),{1,1'-(2, 2',3,3'-OC_(10)H_5SiMePh_2)} _ 2Zr(CH_2Ph)_2(5),(1,1'-(2,2',3,3'-OC_(10)H_5-SiPh_3)} _2M(CH_2Ph)_2(M = Ti(7),M = Zr(8)},2,2'-S(4-Me,6-〜tBuC_6H_2O)_2MX_2 {MX_2 = TiCl_2(10); MX_2 = ZrCl_2( 11); MX_2 = Ti(CH_2Ph)_2(12)},{2,2'-S(4-Me,6-〜tBuC_6H_2O)_2} _2Ti(13),2,2'-(4,6-〜 tBu_2C_6H_2O)_2MX_2 {MX_2 = Ti(CH_2-Ph)_2(14); MX_2 = ZrCl_2(THF)_2(15)},{2,2'-(4-OMe,6-〜tBuC_6H_2O)_2} _2Ti(16 ),2,2'-(4-OMe,6-〜tBuC_6H_2O)_2Ti(CH_2Ph)_2(17)},2,2'-CH_2(4-Et,6-〜tBuC_6H_2O)_2TiX_2 {X = CH_2Ph(18 ),X = Cl(19)和{2,2'-CH_2(4-Et,6-〜tBuC_6H_2O)_2} _2Ti(20)。这类L_2MCl_2系统可以被视为与文献记载相似的系统(O-O)ZrCl_2((OO =螯合酚盐)的烷基化允许进入其他烷基物种。因此,3与MeLi或Me_3SiCH_2Li的反应得到{1,1'-{2,2', 3,3′-OC_(10)H_5SiPh_3} _2ZrX_2 {X = Me(6); X = CH_2SiMe_3(9)},分别ly。据报道其X射线晶体结构为17。在213 K处,17·1 / 2OEt_2具有空间组P1,其晶胞尺寸a = 8.737(9)A,b = 11.840(10)A,c = 17.135(17)A,α= 98.28(7)°,β = 90.53(8)°,γ= 101.38(7)°,μ(MoKα)= 2.88 cm〜(-1)。由于缺乏已知的空间位阻螯合双萘酚,阻碍了制备类似的空间位阻双萘酚硫醇的尝试。尽管没有成功,但仍尝试了合成通往这些配体的途径。在铝助催化剂的存在下,螯合的酚盐,双萘酚钛和锆物种对α-烯烃的低聚具有活性。对于乙烯的聚合,获得高达4740 kg PE / mol催化剂·h(100 kg / g Ti·h)的速率。它们对丁二烯的聚合以及末端乙炔催化环三聚为1,2,4-和1,3,5-三取代的苯具有活性。苯的比例取决于辅助联萘酚配体的空间体积。立体修饰还对1-己烯聚合度以及聚-(1-己烯)的立构规整度有明显的影响。特别地,螯合的醇盐配体骨架可以诱导立体规则性。对于1和2,观察到使用甲基铝氧烷作为助催化剂,观察到1-己烯的区域规则和立体定向聚合,得到高分子量等规聚己烯。在丁二烯的聚合中观察到聚合物微结构中相关配体依赖性的差异。已合成阳离子配合物。制备了[[(C_(10)H_5SiPh_3O)_2Zr(CH_2-Ph)] BPh_4(21)和两性离子性(C_(10)H_5SiPh_3O)_2Zr(CH_2Ph)(η〜6-PhCH_2)B(C_6F_5)_3(22)分别用[PhNMe_2H] BPh_4和B(C_6F_5)_3处理8。它们对乙烯的聚合反应有活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号