...
首页> 外文期刊>Journal of the American Chemical Society >Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes
【24h】

Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes

机译:远程电荷转移激发态的时变密度泛函理论的失败:锌细菌绿素-细菌氯霉素和细菌叶绿素-球体复合物

获取原文
获取原文并翻译 | 示例
           

摘要

It is well-known that time-dependent density functional theory (TDDFT) yields substantial errors for the excitation energies of charge-transfer (CT) excited states, when approximate standard exchange-correlation (xc) functionals are used, for example, SVWN, BLYP, or B3LYP. Also, the correct 1/R asymptotic behavior of CT states with respect to a distance coordinate R between the separated charges of the CT state is not reproduced by TDDFT employing these xc-functionals. Here, we demonstrate by analysis of the TDDFT equations that the first failure is due to the self-interaction error in the orbital energies from the ground-state DFT calculation, while the latter is a similar self-interaction error in TDDFT arising through the electron transfer in the CT state. Possible correction schemes, such as inclusion of exact Hartree-Fock or exact Kohn-Sham exchange, as well as aspects of the exact xc-functional are discussed in this context. Furthermore, a practical approach is proposed which combines the benefits of TDDFT and configuration interaction singles (CIS) and which does not suffer from electron-transfer self-interaction. The latter approach is applied to a (1,4)-phenylene-linked zincbacteriochlorin-bacteriochlorin complex and to a bacteriochlorophyll-spheroidene complex, in which CT states may play important roles in energy and electron-transfer processes. The errors of TDDFT alone for the CT states are demonstrated, and reasonable estimates for the true excitation energies of these states are given.
机译:众所周知,当使用近似标准的交换相关(xc)泛函时,时变密度泛函理论(TDDFT)对于电荷转移(CT)激发态的激发能产生很大的误差。 BLYP或B3LYP。另外,采用这些xc-功能的TDDFT不能再现CT状态相对于CT状态的分离电荷之间的距离坐标R的正确的1 / R渐近行为。在这里,我们通过分析TDDFT方程来证明,第一个失败是由于基态DFT计算中轨道能量中的自相互作用误差引起的,而后者是电子引起的TDDFT中类似的自相互作用误差。在CT状态下传输。在本文中讨论了可能的校正方案,例如包含精确的Hartree-Fock或精确的Kohn-Sham交换,以及精确的xc功能。此外,提出了一种实用的方法,该方法结合了TDDFT和配置相互作用单(CIS)的优点,并且不会遭受电子转移自相互作用的影响。后一种方法适用于(1,4)-亚苯基连接的锌细菌氯霉素-细菌二氯配合物和细菌叶绿素-椭球体配合物,其中CT态在能量和电子转移过程中可能起重要作用。证明了单独的TDDFT对于CT状态的误差,并且给出了对于这些状态的真实激发能的合理估计。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第12期|p. 4007-4016|共10页
  • 作者单位

    Institut fur Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universitat Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt, Germany;

    Department of Chemistry, University of California, Berkeley, and Chemical Science and Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1470;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号