首页> 外文期刊>Journal of the American Chemical Society >Electrostatic Recognition and Induced Fit in the κ-PVIIA Toxin Binding to Shaker Potassium Channel
【24h】

Electrostatic Recognition and Induced Fit in the κ-PVIIA Toxin Binding to Shaker Potassium Channel

机译:静电识别和诱导的κ-PVIIA毒素与振动筛钾通道的结合

获取原文
获取原文并翻译 | 示例
           

摘要

Brownian dynamics (BD) and molecular dynamics (MD) simulations and electrostatic calculations were performed to study the binding process of κ-PVIIA to the Shaker potassium channel and the structure of the resulting complex. BD simulations, guided by electrostatic interactions, led to an initial alignment between the toxin and the channel protein. MD simulations were then carried out to allow for rearrangements from this initial structure. After ~4 ns, a critical "induced fit" process was observed to last for ~2 ns. In this process, the interface was reorganized, and side chains were moved so that favorable atomic contacts were formed or strengthened, while unfavorable contacts were eliminated. The final complex structure was stabilized through electrostatic interactions with the positively charged side chain of Lys7 of κ-PVIIA deeply inserted into the channel pore and other hydrogen bonds and by hydrophobic interactions involving Phe9 and Phe23 of the toxin. The validity of the predicted structure for the complex was assessed by calculating the effects of mutating charged and polar residues of both the toxin and the channel protein, with the calculated effects correlating reasonably well with experimental data. The present study suggests a general binding mechanism, whereby proteins are pre-aligned in their diffusional encounter by long-range electrostatic attraction, and nanosecond-scale rearrangements within the initial complex then lead to a specifically bound complex.
机译:进行了布朗动力学(BD)和分子动力学(MD)模拟以及静电计算,以研究κ-PVIIA与Shaker钾通道的结合过程以及所得复合物的结构。在静电相互作用的指导下,BD模拟导致毒素与通道蛋白之间的初始对齐。然后进行MD模拟,以允许从该初始结构进行重新排列。约4 ns后,观察到一个关键的“诱导拟合”过程持续了约2 ns。在此过程中,对界面进行了重组,并移动了侧链,从而形成或增强了有利的原子接触,同时消除了不利的接触。最终的复合物结构通过与深入插入通道孔的κ-PVIIA的Lys7的带正电的侧链发生静电相互作用而稳定,并且通过涉及毒素的Phe9和Phe23的疏水相互作用而得以稳定。通过计算毒素和通道蛋白的带电荷和极性残基突变的影响来评估复合物的预测结构的有效性,计算的效果与实验数据合理地相关。本研究提出了一种一般的结合机制,即蛋白质通过长距离静电吸引在其扩散相遇中被预先排列,并且初始复合物中的纳秒级重排会导致特异性结合的复合物。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2005年第18期|p.6836-6849|共14页
  • 作者单位

    Institute of Molecular Biophysics and School of Computational Science, Department of Physics, Florida State University, Tallahassee, FL32306;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号