首页> 外文期刊>Journal of the American Chemical Society >The Relationship Between Nanoscale Architecture Andrnfunction In Photovoltaic Multichromophoric Arrays Asrnvisualized By Kelvin Probe Force Microscopy
【24h】

The Relationship Between Nanoscale Architecture Andrnfunction In Photovoltaic Multichromophoric Arrays Asrnvisualized By Kelvin Probe Force Microscopy

机译:用开尔文探针力显微镜观察的光伏多发色阵列中纳米级结构与功能之间的关系

获取原文
获取原文并翻译 | 示例
       

摘要

The physicochemical properties of organic (multi)component films for optoelectronic applications depend on both the mesoscopic and nanoscale architectures within the semiconducting material. Two main classes of semiconducting materials are commonly used: polymers and (liquid) crystals of small aromatic molecules. Whereas polymers (e.g., polyphenylenevinylenes and polythiophenes) are easy to process in solution in thin and uniform layers, small molecules can form highly defined (liquid) crystals featuring high charge mobilities. Herein, we combine the two material types by employing structurally well-defined polyisocyanopeptide polymers as scaffolds to precisely arrange thousands of electron-accepting molecules, namely, perylenebis(dicarboximides) (PDIs), in defined chromophoric wires with lengths of hundreds of nanometers. The polymer backbone enforces high control over the spatial location of PDI dyes, favoring both enhanced exciton and charge transfer. When blended with an electron-donor system such as regioregular poly(3-hexylthiophene), this polymeric PDI shows a relative improvement in charge generation and diffusion with respect to monomeric, aggregated PDI. In order to correlate this enhanced behavior with respect to the architecture, atomic force microscopy investigations on the mixtures were carried out. These studies revealed that the two polymers form interpenetrated bundles having a nanophase-segregated character and featuring a high density of contact points between the two different phases. In order to visualize the relationship between the architecture and the photovoltaic efficiency, Kelvin probe force microscopy measurements were carried out on submonolayer-thick films. This technique allowed for the first time the direct visualization of the photovoltaic activity occurring in such a nanoscale phase-segregated ultrathin film with true nanoscale spatial resolution, thus making possible a study of the correlation between function and architecture with nanoscale resolution.
机译:用于光电应用的有机(多)组分薄膜的物理化学性质取决于半导体材料内的介观和纳米尺度结构。通常使用两类主要的半导体材料:聚合物和芳香族小分子的(液晶)晶体。尽管聚合物(例如,聚亚苯基亚乙烯基和聚噻吩)易于在溶液中以薄而均匀的层进行加工,但是小分子可以形成具有高电荷迁移率的高清晰度(液晶)晶体。在本文中,我们通过使用结构明确的聚异氰肽聚合物作为支架来将两种材料类型结合起来,以精确地排列成千上万个电子接受分子,即per双(二苯甲酰亚胺)(PDI),在定义的发色导线中,其长度为数百纳米。聚合物主链可对PDI染料的空间位置进行严格控制,有利于增强激子和电荷转移。当与电子给体体系(例如区域规则的聚(3-己基噻吩))共混时,相对于单体聚集的PDI,这种聚合物PDI在电荷产生和扩散方面显示出相对的改善。为了使这种增强的行为与体系结构相关联,对混合物进行了原子力显微镜研究。这些研究表明,两种聚合物形成互穿的束,具有纳米相分离的特征,并且在两个不同相之间具有高密度的接触点。为了可视化架构与光伏效率之间的关系,对亚单层厚膜进行了开尔文探针力显微镜测量。这项技术首次实现了在具有真正的纳米级空间分辨率的纳米级相分离超薄膜中发生的光伏活动的直接可视化,从而使得研究具有纳米级分辨率的功能与体系结构之间的相关性成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号