首页> 外文期刊>Journal of the American Chemical Society >Dynamics of Excited-State Conformational Relaxation and Electronic Delocalization in Conjugated Porphyrin Oligomers
【24h】

Dynamics of Excited-State Conformational Relaxation and Electronic Delocalization in Conjugated Porphyrin Oligomers

机译:共轭卟啉低聚物中激发态构象弛豫和电子离域动力学

获取原文
获取原文并翻译 | 示例
       

摘要

We have investigated the influence of nuclear geometric relaxation on the extent of the excited-state electronic delocalization in conjugated zinc porphyrin oligomers using ultrafast transient photolumi-nescence spectroscopy. By use of metal-coordinating templates that force the oligomers into specific geometries in solution we are able to distinguish clearly between relaxation effects arising from the two vibrational modes that preferentially couple to the electronic transitions in such materials, i.e., carbon-carbon bond stretches and inter-ring torsions. We find that light absorption generates an excited state that is initially strongly delocalized along the oligomer but contracts rapidly following vibrational relaxation of the nuclei along C-C stretch coordinates on the subpicosecond time scale. We are able to monitor such excitonic self-trapping effects by observing the extent to which the concomitant ultrafast rotation of the transition dipole moment is found to correlate with the degree of bending induced in the molecular backbone. We further demonstrate that interporphyrin torsional relaxation leads to a subsequent increase in the excited-state electronic delocalization on a longer time scale (~100 ps). Such dynamic planarization of the molecular backbone is evident from the time-dependent increase in the overall emission intensity and red-shift in the peak emission energy that can be observed for wormlike flexible porphyrin octamers but not for torsionally rigidified cyclic or double-strand octamer complexes. These results therefore indicate that, following excitation, the initially highly delocalized excited-state wave function first contracts and then expands again along the conjugated backbone in accordance with the time periods for the vibrational modes coupled to the electronic transition.
机译:我们已经研究了核几何弛豫对共轭锌卟啉低聚物中激发态电子离域程度的影响,使用的是超快瞬态光致发光光谱法。通过使用金属配位模板,可将低聚物强迫进入溶液中的特定几何形状,我们可以清楚地区分由两种振动模式产生的弛豫效应,这两种振动模式优先耦合到此类材料中的电子跃迁,即碳-碳键拉伸和环间扭转。我们发现,光吸收会产生一个激发态,该激发态最初会沿低聚物发生强烈的离域作用,但在皮秒以下的时间尺度上,沿着C-C拉伸坐标的核振动弛豫后会迅速收缩。通过观察过渡偶极矩伴随的超快旋转与分子骨架中诱导的弯曲程度相关的程度,我们能够监控这种激子自陷效应。我们进一步证明了卟啉间的扭转弛豫导致在更长的时间尺度(〜100 ps)上激发态电子离域的随后增加。分子主链的这种动态平面化从总发射强度的时间依赖性增加和峰值发射能量的红移可见,蠕虫状柔性卟啉八聚物可观察到,但扭转刚性的环状或双链八聚物络合物则无法观察到。因此,这些结果表明,在激发之后,最初高度离域的激发态波函数首先收缩,然后根据耦合到电子跃迁的振动模式的时间沿共轭骨架再次扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号