首页> 外文期刊>Journal of the American Chemical Society >Conformational Control of the Q_A to Q_B Electron Transfer in Bacterial Reaction Centers: Evidence for a Frozen Conformational Landscape below -25 ℃
【24h】

Conformational Control of the Q_A to Q_B Electron Transfer in Bacterial Reaction Centers: Evidence for a Frozen Conformational Landscape below -25 ℃

机译:细菌反应中心Q_A到Q_B电子转移的构象控制:-25℃以下冻结构象景观的证据

获取原文
获取原文并翻译 | 示例
       

摘要

The competition between the P~+Q_A~-→ PQ_A charge recombination (P, bacteriochlorophyll pair acting as primary photochemical electron donor) and the electron transfer to the secondary quinone acceptor Q_A~-Q_B→Q_AQ_B~- (Q_A and Q_B, primary and secondary electron accepting quinones) was investigated in chromatophores of Rb. capsulatus, varying the temperature down to -65℃. The analysis of the flash-induced pattern for the formation of P~+Q_AQ_B~- shows that the diminished yield, when lowering the temperature, is not due to a homogeneous slowing of the rate constant k_(AB) of the Q_A~-Q_B→ Q_AQ_B~- electron transfer but to a distribution of conformations that modulate the electron transfer rate over more than 3 orders of magnitude. This distribution appears "frozen", as no dynamic redistribution was observed over time ranges > 10 s (below -25 ℃). The kinetic pattern was analyzed to estimate the shape of the distribution of k_(AB), showing a bell-shaped band on the high rate side and a fraction of "blocked" reaction centers (RCs) with very slow k_(AB). When the temperature is lowered, the high rate band moves to slower rate regions and the fraction of blocked RCs increases at the expense of the high rate band. The RCs that recombine from the P~+Q_AQ_B~- state appear temporarily converted to a state with rapid k_(AB), indicating that the stabilized state described by Kleinfeld et al. (Biochemistry 1984, 23, 5780-5786) is still accessible at -60℃.
机译:P〜+ Q_A〜-→PQ_A电荷重组(P,细菌叶绿素对充当初级光化学电子给体)和电子转移至次级醌受体Q_A〜-Q_B→Q_AQ_B〜-(Q_A和Q_B,初级和次级)之间的竞争Rb的色谱图中研究了二次电子接受醌)。荚膜,温度低至-65℃。对形成P〜+ Q_AQ_B〜-的闪光诱发图形的分析表明,降低温度时产量的降低并不是由于Q_A〜-Q_B的速率常数k_(AB)均匀降低而引起的。 →Q_AQ_B〜-电子转移,但构象分布可在超过3个数量级上调节电子转移速率。该分布显示为“冻结”,因为在大于10 s(低于-25℃)的时间范围内未观察到动态重新分布。分析动力学模式以估计k_(AB)的分布形状,显示出高速率侧的钟形带和非常慢的k_(AB)的一部分“受阻”反应中心(RCs)。当温度降低时,高速率带会移至速率较低的区域,并且受阻的RC比例会增加,而高速率带会有所损失。从P〜+ Q_AQ_B〜-状态重新结合的RC似乎暂时转换为k_(AB)迅速的状态,表明Kleinfeld等人描述的稳定状态。 (Biochemistry 1984,23,5780-5786)仍可在-60℃下使用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2008年第29期|9318-9331|共14页
  • 作者

    Nicolas Ginet; Jerome Lavergne;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:19:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号