首页> 外文期刊>Journal of the American Chemical Society >Scaling Dopant States in a Semiconducting Nanostructure by Chemically Resolved Electron Energy-Loss Spectroscopy: A Case Study on Co-Doped ZnO
【24h】

Scaling Dopant States in a Semiconducting Nanostructure by Chemically Resolved Electron Energy-Loss Spectroscopy: A Case Study on Co-Doped ZnO

机译:化学分辨电子能谱分析在半导体纳米结构中缩放掺杂态:以共掺杂ZnO为例

获取原文
获取原文并翻译 | 示例
       

摘要

Dilute dopant introduces foreign states to the electronic structures of host semiconductors and imparts intriguing properties to the materials. Identifying and positioning the dopant states are of crucial importance for seeking the underlying mechanism in the doped systems. However, such determination has still been challenging, particularly for individual nanostructured materials, due to the lack of the spectroscopic probe that possesses both nanometer spatial resolution and chemical resolution. Here, we shall demonstrate the successful scaling of dopant states of individual semiconducting nanostructures by chemically resolved electron energy-loss spectroscopy (EELS), taking the individual Co-doped ZnO nanorods as an example. Guided by the Co dopant spatial distribution mapped by the core-loss EELS technique, chemical resolution is achieved in the accumulated valence electron energy-loss spectra. Three Co dopant states are successfully identified and positioned in the host ZnO bands. Furthermore, the electron extension degrees of the Co dopant states are assessed on the basis of the multiple-atom effect. The above experimental inputs optimize the density functional theoretical calculations, which generates the corrected full electronic structures of (Zn,Co)O dilute magnetic semiconductors. These results give a carrier-mediated interpretation for the room-temperature ferromagnetism of Co-doped ZnO nanostructures based on a recent theory.
机译:稀掺杂剂将杂质引入到主体半导体的电子结构中,并赋予材料迷人的性能。识别和定位掺杂剂状态对于在掺杂系统中寻找潜在机制至关重要。然而,由于缺乏同时具有纳米空间分辨率和化学分辨率的光谱探针,这种确定仍然具有挑战性,特别是对于单个纳米结构材料而言。在这里,我们将通过化学分辨电子能量损失谱(EELS),以单个Co掺杂的ZnO纳米棒为例,演示单个半导体纳米结构的掺杂状态的成功定标。在磁芯损耗EELS技术映射的Co掺杂剂空间分布的指导下,在累积价电子能量损耗谱中实现了化学拆分。成功地确定了三种Co掺杂剂态并将其置于主体ZnO带中。此外,基于多原子效应来评估Co掺杂态的电子扩展度。以上实验输入优化了密度泛函理论计算,从而生成了经校正的(Zn,Co)O稀磁半导体的完整电子结构。这些结果基于最近的理论,给出了载流子对Co掺杂ZnO纳米结构的室温铁磁性的解释。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第18期|P.6492-6497|共6页
  • 作者单位

    Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia Department of Physics, Soochow University, Suzhou 215006, People's Republic of China;

    rnNational Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China;

    rnDepartment of Physics, Southeast University, Nanjing 211189, People's Republic of China;

    rnAustralian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia;

    rnDepartment of Physics, Southeast University, Nanjing 211189, People's Republic of China;

    rnDepartment of Physics, Soochow University, Suzhou 215006, People's Republic of China;

    rnDepartment of Physics, Soochow University, Suzhou 215006, People's Republic of China;

    rnNational Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China;

    rnNational Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China;

    rnDepartment of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号