首页> 外文期刊>Journal of the American Chemical Society >Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends
【24h】

Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends

机译:超快激子解离,随后在PCDTBT:PCBM光伏混合物中进行非对基电荷复合

获取原文
获取原文并翻译 | 示例
       

摘要

The precise mechanism and dynamics of charge generation and recombination in bulk heterojunction polymer: fullerene blend films typically used in organic photovoltaic devices have been intensively studied by many research groups, but nonetheless remain debated. In particular the role of interfacial charge-transfer (CT) states in the generation of free charge carriers, an important step for the understanding of device function, is still under active discussion. In this article we present direct optical probes of the exciton dynamics in pristine films of aprototypic polycarbazole-based photovoltaic donor polymer, namely poly[N-l l"-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',l',3'-benzothiadiazole)] (PCDTBT), as well as the charge generation and recombination dynamics in as-cast and annealed photovoltaic blend films using methanofullerene (PC_61BM) as electron acceptor. In contrast to earlier studies we use broadband (500— 1100 nm) transient absorption spectroscopy including the previously unobserved but very important time range between 2 ns and 1 ms, which allows us not only to observe the entire charge carrier recombination dynamics but also to quantify the existing decay channels. We determine that ultrafast exciton dissociation occurs in blends and leads to two separate pools of products, namely Coulombically bound charge-transfer (CT) states and unbound (free) charge carriers. The recombination dynamics are analyzed within the framework of a previously reported model for poly(3-hexylthiophene):PCBM (Howard, I. A. et al. J. Am. Chem. Soc. 2010,132,14866) based on concomitant geminate recombination of CT states and nongeminate recombination of free charge carriers. The results reveal that only ~ 11% of the initial photoexcitations generate interfacial CT states that recombine exclusively by fast nanosecond geminate recombination and thus do not contribute to the photocurrent, whereas ~89% of excitons create free charge carriers on an ultrafast time scale that then contribute to the extracted photocurrent. Despite the high yield of free charges the power conversion efficiency of devices remains moderate at about 3.0%. This is largely a consequence of the low fill factor of devices. We relate the low fill factor to significant energetic disorder present in the pristine polymer and in the polymer: fullerene blends. In the former we observed a significant spectral relaxation of exciton emission (fluorescence) and in the latter of the polaron-induced ground-state bleaching, implying that the density of states (DOS) for both excitons and charge carriers is significantly broadened by energetic disorder in pristine PCDTBT and in its blend with PCBM. This disorder leads to charge trapping in solar cells, which in turn causes higher carrier concentrations and more significant nongeminate recombination. The nongeminate recombination has a significant impact on the IV curves of devices, namely its competition with charge carrier extraction causes a stronger bias dependence of the photocurrent of devices, in turn leading to the poor device fill factor. In addition our results demonstrate the importance of ultrafast free carrier generation and suppression of interfacial CT-state formation and question the applicability of the often used Braun—Onsager model to describe the bias dependence of the photocurrent in polymer: fullerene organic photovoltaic devices.
机译:大量异质结聚合物:通常用于有机光伏器件的富勒烯共混膜的精确电荷产生和复合的机理和动力学已被许多研究小组深入研究,但仍存在争议。特别是,界面电荷转移(CT)状态在自由电荷载流子的产生中的作用,这是了解器件功能的重要步骤,目前仍在积极讨论中。在本文中,我们提出了基于原型的基于聚咔唑的光伏供体聚合物的原始膜中激子动力学的直接光学探针,即聚[Nl“ -henicosanyl-2,7-咔唑-alt-5,5-(4',7 (-di-2-thienyl-2',l',3'-苯并噻二唑)](PCDTBT),以及使用甲亚富勒烯(PC_61BM)作为电子受体的铸态和退火光伏共混薄膜中的电荷产生和复合动力学与之前的研究相比,我们使用宽带(500- 1100 nm)瞬态吸收光谱法,其中包括之前未观察到但非常重要的2 ns和1 ms之间的时间范围,这不仅使我们能够观察到整个电荷载流子复合动力学,而且量化现有的衰变通道,我们确定超快激子解离发生在共混物中,并导致两个独立的产物库,即库伦结合电荷转移(CT)状态和未结合(自由)电荷载流子。以前报道的聚(3-己基噻吩):PCBM模型的框架(Howard,I.A. et al。 J.上午化学Soc。 (2010,132,14866)的基础上,结合了CT态的重叠重组和自由电荷载流子的非重叠重组。结果表明,仅约11%的初始光激发会生成界面CT状态,这些状态仅通过快速的纳秒级重叠重组而复合,因此对光电流没有贡献,而约89%的激子在超快时间尺度上产生自由电荷载流子,然后有助于提取的光电流。尽管免费电荷的产率很高,但器件的功率转换效率仍保持中等,约为3.0%。这主要是由于设备的低填充因子所致。我们将低填充因子与原始聚合物和聚合物:富勒烯共混物中存在的明显的能量紊乱联系起来。在前者中,我们观察到了激子发射(荧光)的光谱弛豫,而在极化子引起的基态漂白中则观察到了弛豫,这表明激子和电荷载流子的态密度(DOS)都因高能紊乱而大大扩展。原始PCDTBT及其与PCBM的混合物。这种无序现象会导致太阳能电池中的电荷陷获,进而导致更高的载流子浓度和更重要的非双键重组。非双键重组对器件的IV曲线具有重大影响,即其与电荷载流子提取的竞争导致器件光电流的偏置依赖性更强,进而导致较差的器件填充因子。此外,我们的结果证明了超快自由载流子生成和抑制界面CT态形成的重要性,并质疑了常用的Braun-Onsager模型来描述光电流在聚合物中的依赖关系:富勒烯有机光伏器件。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第24期|p.9469-9479|共11页
  • 作者单位

    Max Planck Research Group for Organic Optoelectronics, Max Planck Institute for Polymer Research, Ackermannweg 10,Mainz D-55128, Germany;

    Max Planck Research Group for Organic Optoelectronics, Max Planck Institute for Polymer Research, Ackermannweg 10,Mainz D-55128, Germany;

    Max Planck Research Group for Organic Optoelectronics, Max Planck Institute for Polymer Research, Ackermannweg 10,Mainz D-55128, Germany;

    Max Planck Research Group for Organic Optoelectronics, Max Planck Institute for Polymer Research, Ackermannweg 10,Mainz D-55128, Germany;

    Department of Advanced Materials, Hannam University, Daejeon 305-811, Republic of Korea;

    Department of Advanced Materials, Hannam University, Daejeon 305-811, Republic of Korea;

    IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-700,Republic of Korea;

    Max Planck Research Group for Organic Optoelectronics, Max Planck Institute for Polymer Research, Ackermannweg 10,Mainz D-55128, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号