首页> 外文期刊>Journal of the American Chemical Society >Designing a Deep-Ultraviolet Nonlinear Optical Material with a Large Second Harmonic Generation Response
【24h】

Designing a Deep-Ultraviolet Nonlinear Optical Material with a Large Second Harmonic Generation Response

机译:设计具有大次谐波产生响应的深紫外非线性光学材料

获取原文
获取原文并翻译 | 示例
           

摘要

The generation of intense coherent deep-UV light from nonlinear optical materials is crucial to applications ranging from semiconductor photolithography and laser micromachining to photochemical synthesis. However, few materials with large second harmonic generation (SHG) and a short UV-cutoff edge are effective down to 200 nm. A notable exception is KBe_2BO_3F_2, which is obtained from a solid-state reaction of highly toxic beryllium oxide powders. We designed and synthesized a benign polar material, Ba_4B_(11)O_(20)F, that satisfies these requirements and exhibits the largest SHG response in known borates containing neither lone-pair-active anions nor second-order Jahn-Teller-active transition metals. We developed a microscopic model to explain the enhancement, which is unexpected on the basis of conventional anionic group theory arguments. Crystal engineering of atomic displacements along the polar axis, which are difficult to attribute to or identify within unique anionic moieties, and greater cation polarizabilities are critical to the design of next-generation SHG materials.
机译:从非线性光学材料产生强烈的相干深紫外光对于从半导体光刻和激光微加工到光化学合成的应用至关重要。但是,很少有具有大的二次谐波(SHG)和短的UV截止边缘的材料在200 nm以下有效。一个明显的例外是KBe_2BO_3F_2,它是由高毒性氧化铍粉末的固态反应制得的。我们设计并合成了一种良性极性材料Ba_4B_(11)O_(20)F,该材料满足这些要求,并且在既不包含孤对活性阴离子也不包含二阶Jahn-Teller-活性跃迁的已知硼酸盐中表现出最大的SHG响应金属。我们开发了一个微观模型来解释这种增强作用,这是在传统阴离子基团理论的基础上无法预料的。沿极轴进行原子位移的晶体工程,这很难归因于或无法识别出独特的阴离子部分,而更高的阳离子极化率对于下一代SHG材料的设计至关重要。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第11期|4215-4218|共4页
  • 作者单位

    Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;

    Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;

    Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;

    Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;

    Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;

    Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China;

    Department of Chemistry, Northwestern University, Evanston Illinois 60208-3131, United States;

    Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104-2816, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号