首页> 外文期刊>Journal of the American Chemical Society >A Comprehensive Study of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics: Synthesis and Electrical Transport Measurements
【24h】

A Comprehensive Study of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics: Synthesis and Electrical Transport Measurements

机译:分子电子学中扩展的四硫富瓦烯十字形分子的综合研究:合成和电迁移测量

获取原文
获取原文并翻译 | 示例
       

摘要

Cruciform-like molecules with two orthogonally placed π-conjugated systems have in recent years attracted significant interest for their potential use as molecular wires in molecular electronics. Here we present synthetic protocols for a large selection of cruciform molecules based on oligo-(phenyleneethynylene) (OPE) and tetrathiafulvalene (TTF) scaffolds, end-capped with acetyl-protected thiolates as electrode anchoring groups. The molecules were subjected to a comprehensive study of their conducting properties as well as their photophysical and electrochemical properties in solution. The complex nature of the molecules and their possible binding in different configurations in junctions called for different techniques of conductance measurements: (1) conducting-probe atomic force microscopy (CP-AFM) measurements on self-assembled monolayers (SAMs), (2) mechanically controlled break-junction (MCBJ) measurements, and (3) scanning tunneling microscopy break-junction (STM-BJ) measurements. The CP-AFM measurements showed structure-property relationships from SAMs of series of OPE3 and OPE5 cruciform molecules; the conductance of the SAM increased with the number of dithiafulvene (DTF) units (0, 1, 2) along the wire, and it increased when substituting two arylethynyl end groups of the OPE3 backbone with two DTF units. The MCBJ and STM-BJ studies on single molecules both showed that DTFs decreased the junction formation probability, but, in contrast, no significant influence on the single-molecule conductance was observed. We suggest that the origins of the difference between SAM and single-molecule measurements lie in the nature of the molecule-electrode interface as well as in effects arising from molecular packing in the SAMs. This comprehensive study shows that for complex molecules care should be taken when directly comparing single-molecule measurements and measurements of SAMs and solid-state devices thereof.
机译:近年来,具有两个正交放置的π共轭体系的十字形分子因其在分子电子学中作为分子导线的潜在用途而引起了人们的极大兴趣。在这里,我们介绍基于寡聚-(亚苯基亚乙炔基)(OPE)和四硫富瓦烯(TTF)支架的大量十字形分子的合成方案,这些支架末端用乙酰基保护的硫醇盐作为电极锚定基团。对这些分子的导电性能以及在溶液中的光物理和电化学性能进行了全面研究。分子的复杂性质及其在连接中以不同构型结合的可能要求采用不同的电导测量技术:(1)在自组装单分子膜(SAMs)上进行导电探针原子力显微镜(CP-AFM)测量,(2)机械控制的断裂连接(MCBJ)测量,以及(3)扫描隧道显微镜断裂连接(STM-BJ)测量。 CP-AFM测量显示一系列OPE3和OPE5十字形分子的SAM具有结构-性质关系。 SAM的电导率随导线中二硫富烯(DTF)单元(0、1、2)的数量而增加,而当用两个DTF单元取代OPE3骨架的两个芳乙炔基端基时,SAM的电导率增加。 MCBJ和STM-BJ对单分子的研究均表明DTF降低了结形成的可能性,但相反,未观察到对单分子电导的显着影响。我们建议,SAM和单分子测量之间的差异的根源在于分子-电极界面的性质以及SAM中分子堆积产生的影响。这项全面的研究表明,对于复杂分子,直接比较单分子测量值和SAM及其固态设备的测量值时,应格外小心。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第47期|16497-16507|共11页
  • 作者单位

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Laboratorio de Bajas Temperaturas, Departamento de Fisica de la Materia Condensada Modulo 3, Universidad Autonoma de Madrid, E-28049, Madrid, Spain, IMDEA-Nanoscience, Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain;

    Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark, Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark, Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    IMDEA-Nanoscience, Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain;

    National Center for Nanoscience and Technology, Beijing 100190, P. R. China;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Laboratorio de Bajas Temperaturas, Departamento de Fisica de la Materia Condensada Modulo 3, Universidad Autonoma de Madrid, E-28049, Madrid, Spain;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands;

    Laboratorio de Bajas Temperaturas, Departamento de Fisica de la Materia Condensada Modulo 3, Universidad Autonoma de Madrid, E-28049, Madrid, Spain, IMDEA-Nanoscience, Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain;

    Department of Chemistry & Center for Exploitation of Solar Energy & Nano-Science Center & Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号