首页> 外文期刊>Journal of the American Chemical Society >Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy
【24h】

Long-Range Distance Measurements in Proteins at Physiological Temperatures Using Saturation Recovery EPR Spectroscopy

机译:使用饱和恢复EPR光谱在生理温度下蛋白质的远距离测量

获取原文
获取原文并翻译 | 示例
       

摘要

Site-directed spin labeling in combination with EPR is a powerful method for providing distances on the nm scale in biological systems. The most popular strategy, double electron-electron resonance (DEER), is carried out at cryogenic temperatures (50-80 K) to increase the short spin-spin relaxation time (T_2) upon which the technique relies. A challenge is to measure long-range distances (20-60 A) in proteins near physiological temperatures. Toward this goal we are investigating an alternative approach based on the distance-dependent enhancement of spin-lattice relaxation rate (T_1~(-1)) of a nitroxide spin label by a paramagnetic metal. With a commonly used nitroxide side chain (R1) and Cu~(2+), it has been found that interspin distances ≤25 A can be determined in this way (Jun et al. Biochemistry 2006, 45, 11666). Here, the upper limit of the accessible distance is extended to ≈40 A using spin labels with long T_1, a high-affinity 5-residue Cu~(2+) binding loop inserted into the protein sequence, and pulsed saturation recovery to measure relaxation enhancement. Time-domain Cu~(2+) electron paramagnetic resonance, quantum mechanical calculations, and molecular dynamics simulations provide information on the structure and geometry of the Cu~(2+) loop and indicate that the metal ion is well-localized in the protein. An important aspect of these studies is that both Cu~(2+)itroxide DEER at cryogenic temperatures and T_1 relaxation measurements at room temperature can be carried out on the same sample, allowing both validation of the relaxation method and assessment of the effect of freezing on protein structure.
机译:结合EPR的定点旋转标记是一种在生物系统中提供纳米级距离的有效方法。最流行的策略是在低温(50-80 K)下执行双电子电子共振(DEER),以增加该技术所依赖的短自旋-自旋弛豫时间(T_2)。一个挑战是在接近生理温度的情况下测量蛋白质的远距离距离(20-60 A)。为了实现这个目标,我们正在研究一种替代方法,该方法基于顺磁性金属对氮氧化物自旋标记的自旋晶格弛豫速率(T_1〜(-1))的距离依赖性增强。已经发现,对于常用的一氧化氮侧链(R1)和Cu〜(2+),可以以这种方式确定纺锤间距离≤25A(Jun et al。Biochemistry 2006,45,11666)。在这里,使用具有长T_1的自旋标签,将高亲和力的5残基Cu〜(2+)结合环插入蛋白质序列中以及脉冲饱和度恢复以测量松弛度,将可到达距离的上限扩展至≈40A增强。时域Cu〜(2+)电子顺磁共振,量子力学计算和分子动力学模拟可提供有关Cu〜(2+)环的结构和几何形状的信息,并表明金属离子在蛋白质中的定位很好。这些研究的一个重要方面是,可以在同一样品上进行低温下的Cu〜(2 +)/一氧化二氮DEER和室温下的T_1弛豫测量,从而既可以验证弛豫方法,又可以评估冻结蛋白质结构。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第43期|15356-15365|共10页
  • 作者单位

    Jules Stein Eye Institute, University of California, Los Angeles, California 90095, United States;

    Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States;

    Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States;

    Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92831;

    Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States;

    Jules Stein Eye Institute, University of California, Los Angeles, California 90095, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号